Geometridae Stephens, 1829 from different altitudes in Western Himalayan Protected Areas of Uttarakhand, India (Lepidoptera: Geometridae)
DOI:
https://doi.org/10.57065/shilap.978Parole chiave:
Lepidoptera, Geometridae, diversity, altitude, Western Himalaya, indicator species, Uttarakhand, IndiaAbstract
The Geometridae Stephens, 1829 are considered as an excellent model group to study insect diversity patterns across elevational gradients globally. This paper documents 168 species of Geometridae belonging to 99 genera and 5 subfamilies from different Protected Areas in a Western Himalayan state, Uttarakhand in India. The list includes 36 species reported for the first time from Uttarakhand, which hitherto was poorly explored and reveals significant altitudinal range expansion for at least 15 species. We sampled different vegetation zones across an elevation gradient stretching from 600 m up to 3600 m, in Dehradun-Rajaji landscape, Nanda Devi National Park, Valley of Flowers National Park, Govind Wildlife Sanctuary, Gangotri National Park and Askot Wildlife Sanctuary. The subfamily Ennominae represented the maximum number of species, and the species of subfamily Larentiinae were found to be more restricted to higher elevation areas. Western Mixed Coniferous forest held the greatest number of species, whereas the Subalpine forest was characterized by the highest number of indicator species identified through Indicator Species Analysis. While Indo-Malayan species dominated the assemblage composition, the maximum number of Himalayan endemics suggested that these species are long adapted to the Himalayan climatic gradient and ongoing climate-mediated perturbation may hamper their future survival.
Downloads
Riferimenti bibliografici
ASHTON, L. A., ODELL, E. H., BURWELL, C. J., MAUNSELL, S. C., NAKAMURA, A., MCDONALD, W. J. F. & KITCHING, R. L., 2016.– Altitudinal patterns of moth diversity in tropical and subtropical Australian rainforests.– Austral Ecology, 41(2): 197-208. DOI: https://doi.org/10.1111/aec.12309
ASHTON, L. A., KITCHING, R. L., MAUNSELL, S., BITO, D. & PUTLAND, D., 2011.– Macrolepidopteran assemblages along an altitudinal gradient in subtropical rainforest exploring indicators of climate change.– Memoirs of the Queensland Museum, 55: 375-389.
AXMACHER, J., HOLTMANN, G., SCHEUERMANN, L., BREHM, G., MÜLLER-HOHENSTEIN, K. & FIEDLER, K., 2004.– Diversity of geometrid moths (Lepidoptera: Geometridae) along an Afrotropical elevational rainforest transect.– Diversity and Distributions, 10: 293-302. DOI: https://doi.org/10.1111/j.1366-9516.2004.00101.x
BARLOW, H. S., 1982.– An Introduction to the Moths of South East Asia: 305 pp. Malayan Nature Society, Kuala Lumpur.
BECK, J., BREHM, G. & FIEDLER, K., 2011.– Links between the environment, abundance and diversity of Andean moths.– Biotropica, 43: 208-217. DOI: https://doi.org/10.1111/j.1744-7429.2010.00689.x
BECK, J., SCHULZE, C. H., LINSENMAIR, K. E. & FIEDLER, K., 2002.– From forest to farmland: diversity of geometrid moths along two habitat gradients in Borneo.– Journal of Tropical Ecology, 17: 33-51. DOI: https://doi.org/10.1017/S026646740200202X
BENISTON, M., DIAZ, H. F. & BRADLEY, R. S., 1997.– Climate change at high elevation sites: an overview.– Climate Change, 36: 233-251. DOI: https://doi.org/10.1023/A:1005380714349
BREHM, G. & FIEDLER, K., 2003.– Faunal composition of geometrid moths changes with altitude in an Andean montane rain forest.– Journal of Biogeography, 30: 431-440. DOI: https://doi.org/10.1046/j.1365-2699.2003.00832.x
BREHM, G., COLWELL, R. K. & KLUGE, J., 2007.– The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient.– Global Ecology and Biogeography, 16: 205-217. DOI: https://doi.org/10.1111/j.1466-8238.2006.00281.x
BREHM, G., STRUTZENBERGER, P. & FIEDLER, K., 2013.– Phylogenetic diversity of geometrid moths decreases with elevation in the tropical Andes.– Ecography, 36: 1247-1253. DOI: https://doi.org/10.1111/j.1600-0587.2013.00030.x
BREHM, G., SÜSSENBACH, D. & FIEDLER, K., 2003.– Unique elevational patterns of geometrid moths in an Andean montane rainforest.– Ecography, 26: 456-466. DOI: https://doi.org/10.1034/j.1600-0587.2003.03498.x
BURWELL, C. J. & NAKAMURA, A., 2011.– Distribution of ant species along an altitudinal transect in continuous rainforest in sub-tropical Queensland, Australia.– Memoirs of Queensland Museum, 55: 391-411.
CHAMPION, H. G. & SETH, S. K., 1968.– A revised survey of forest types of India: 404 pp. Government of India Press, New Delhi.
CHAWLA, A., RAJKUMAR, S., SINGH, K. N., LAL B. & THUKRAL, A. K., 2008.– Plant species diversity along an altitudinal gradient of Bhabha Valley in Western Himalaya.– Journal of Mountain Science, 5: 157–177. DOI: https://doi.org/10.1007/s11629-008-0079-y
CHEN, I. C., SHIU, H. J., BENEDICK, S., HOLLOWAY, J. D., CHEY, V. K., BARLOW, H. S., HILL, J. K. & THOMAS, C. D., 2009.– Elevation increases in moth assemblages over 42 years on a tropical mountain.– Proceedings of the National Academy of Sciences, 106(5): 1479-1483. DOI: https://doi.org/10.1073/pnas.0809320106
CHEY, V. K., HOLLOWAY, J. D. & SPEIGHT, M. R., 1997.– Diversity of moths in forest plantations and natural forests in Sabah.– Bulletin of Entomological Research, 87: 371-385. DOI: https://doi.org/10.1017/S000748530003738X
COLWELL, R. K. & CODDINGTON, J. A., 1994.– Estimating terrestrial biodiversity through extrapolation.– Philosophical transactions of the Royal Society London, 345: 101-118. DOI: https://doi.org/10.1098/rstb.1994.0091
DUFRENE, M. & LEGENDRE, P., 1997.– Species assemblages and indicator species: the need for a flexible asymmetrical approach.– Ecological Monographs, 67: 345-366. DOI: https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2
FOSTER, P., 2001.– The potential negative impacts of global climate change on tropical montane cloud forests.– Earth-Science Reviews, 55: 73-106. DOI: https://doi.org/10.1016/S0012-8252(01)00056-3
GRAHAM, C. H., PARRA, J. L., RAHBEK, C. & MCGUIRE, J. A., 2009.– Phylogenetic structure in tropical hummingbird communities.– Proceedings of the National Academy of Science, 106: 19673-19678. DOI: https://doi.org/10.1073/pnas.0901649106
HAMPSON, G. F., 1892.– Fauna of British India including Ceylon and Burma-Moths, 1: 527 pp. Taylor & Francis, London.
HAMPSON, G. F., 1894.– Fauna of British India including Ceylon and Burma-Moths, 2: 609 pp. Taylor & Francis, London.
HAMPSON, G. F., 1895.– Fauna of British India including Ceylon and Burma-Moths, 3: 546 pp. Taylor & Francis, London.
HAMPSON, G. F., 1896.– Fauna of British India including Ceylon and Burma-Moths, 4: 594 pp. Taylor & Francis, London.
HILT, N., BREHM, G. & FIEDLER, K., 2006.– Diversity and ensemble composition of geometrid moths along a successional gradient in the Ecuadorian Andes.– Journal of Tropical Ecology, 22: 155-166. DOI: https://doi.org/10.1017/S0266467405003056
HODKINSON, I. D., 2005.– Terrestrial insects along elevation gradients: species and community responses to altitude.– Biological Reviews, 80: 489-513. DOI: https://doi.org/10.1017/S1464793105006767
HARUTA, T. (eds.), 1994.– Moths of Nepal, Part 3, Tinea. 14 (Supplement 1): 171 pp. Japan Heterocerists’ Society, Tokyo.
HARUTA, T. (eds.), 1995.– Moths of Nepal, Part 4, Tinea. 14 (Supplement 2): 206 pp. Japan Heterocerists’ Society, Tokyo.
HARUTA, T. (eds.), 1998.– Moths of Nepal, Part 5, Tinea. 15 (Supplement 1): 330 pp. Japan Heterocerists’ Society, Tokyo.
HARUTA, T. (eds.), 2000.– Moths of Nepal, Part 6, Tinea. 16 (Supplement 1): 163 pp. Japan Heterocerists’ Society, Tokyo.
HOLLOWAY, J. D., 1985.– Moths as indicator organisms for categorizing rain-forest and monitoring changes and regeneration process.– In A. C. CHADWICK & S. L. SUTTON (eds). Tropical rain-forest: the Leeds Symposium. Leeds Philosophical and Literary Society: 235-242 pp. Leeds.
HOLLOWAY, J. D., 1987.– Macrolepidoptera diversity in the Indo-Australian tropics, geographic, biotopic and taxonomic variations.– Biological Journal of the Linnean Society, 30: 325-341. DOI: https://doi.org/10.1111/j.1095-8312.1987.tb00306.x
HOLLOWAY, J. D., 1993.– The moths of Borneo (part 11); Family Geometridae: Subfamilies Ennominae.– Malayan Nature Journal, 47: 1-309.
HOLLOWAY, J. D., 1996.– The moths of Borneo (part 9); Family Geometridae: Subfamilies Oenochrominae, Desmobathrinae, Geometrinae.– Malayan Nature Journal, 49: 147-326.
HOLLOWAY, J. D., 1997.– The moths of Borneo (part 10); Family Geometridae: Subfamilies Subfamilies Sterrhinae, Larentiinae, Addenda to other subfamilies.– Malayan Nature Journal, 51: 1-242.
HOLLOWAY, J. D., 1998.– The impact of traditional and modern cultivation practices, including forestry, on Lepidoptera diversity in Malaysia and Indonesia.– In D. M. NEWBERY. Dynamics of Tropical Communities: 567-597 pp. Cambridge University Press, London.
INTACHAT, J., HOLLOWAY, J. D. & SPEIGHT, M. R., 1997.– The effects of different forest management practices on geometrid moth populations and their diversity in Peninsular Malaysia.– Journal of Tropical Forest Science, 9: 411-430.
KESSLER, M., 2002.– The elevational gradient of Andean plant endemism: varying influences of taxon-specific traits and topography at different taxonomic levels.– Journal of Biogeography, 29: 1159-1165. DOI: https://doi.org/10.1046/j.1365-2699.2002.00773.x
KITCHING, R. L., ORR, A. G., THALIB, L., MITCHELL, H., HOPKINS, M. S. & GRAHAM, A. W., 2000.– Moth assemblages as indicators of environmental quality in remnants of upland Australian rain forest.– Journal of Applied Ecology, 37: 284-297. DOI: https://doi.org/10.1046/j.1365-2664.2000.00490.x
MCGEACHIE, W. J., 1989.– The effects of moonlight illuminance, temperature and wind speed on light-trap catches of moths.– Bulletin of Entomological Research, 79: 185-192. DOI: https://doi.org/10.1017/S0007485300018162
PARMESAN, C., 2006.– Ecological and evolutionary responses to recent climate change.– Annual Review of Ecology, Evolution, and Systematics, 37: 637-669. DOI: https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
RAHBECK, C., 1997.– The relationship among area, elevation, and regional species richness in Neotropical birds.– The American Naturalist, 149: 875-902. DOI: https://doi.org/10.1086/286028
SANDERS, N. J. & RAHBEK, C., 2012.– The patterns and causes of elevational diversity gradients.– Ecography, 35: 1-3. DOI: https://doi.org/10.1111/j.1600-0587.2011.07338.x
SCHULZE, C. H., 2000.– Auswirkungen anthropogener Störungen auf die Diversität von Herbivoren-Analyse von Nachtfalterzönosen entlang von Habitatgradienten in Ost- Malaysia. 350 pp. Ph. D. Thesis, University of Bayreuth.
SCOBLE, M. J. & HAUSMANN, A., 2007.– Online list of valid and nomenclaturally available names of the Geometridae of the world. Available from http://www.lepbarcoding.org/cl_geometridae.php (accessed 4th February, 2016).
SCOBLE, M. J., 1995.– The Lepidoptera: Form, Function and Diversity: 420 pp. The Natural History Museum and Oxford University Press, Oxford.
SCOBLE, M. J., GASTON, K. J. & CROOK, A., 1995.– Using taxonomic data to estimate species richness in Geometridae.– Journal of the Lepidopterists’ Society, 49: 136-147.
SMETACEK, P., 2008.– Moths recorded from different elevations in Nainital District, Kumaon Himalaya, India.– Bionotes, 10: 5-15.
STORK, N. & BRENDALL, M., 1990.– Variation in the insect fauna of Sulawesi trees with season, altitude and forest type. Insects and the rain forests of South East Asia.– Wallacea, 7: 173-190.
SZUMIK, C., AAGESEN, L., CASAGRANDA, D., ARZAMENDIA, V., BALDO, D., CLAPS, L. E., CUEZZO, F., GOMEZ, J. M. D., DI GIACOMO, A., GIRAUDO, A., GOLOBOFF, P., GRAMAJO, C., KOPUCHIAN, C., KRETZSCHMAR, S., LIZARRALDE, M., MOLINA, A., MOLLERACH, M., NAVARRO, F., NOMDEDEU, S., PANIZZA, A., PEREYRA, V.V., SANDOVAL, M., SCROCCHI, G. & ZULOAGA, F. O., 2012.– Detecting areas of endemism with a taxonomically diverse data set: plants, mammals, reptiles, amphibians, birds and insects from Argentina.– Cladistics, 28: 317-329. DOI: https://doi.org/10.1111/j.1096-0031.2011.00385.x
WALIA, V. K., 2005.– Insecta: Lepidoptera: Geometridae: 181-190.– In H. S. MEHTA (ed.). Fauna of Western Himalaya, 2: 358 pp. Zoological Survey of India, Kolkata.
WEBB, C. O., ACKERLY, D. D., MCPEEK, M. A. & DONOGHUE, M. J., 2002.– Phylogenies and community ecology.– Annual Review of Ecological Systematics, 33: 475-505. DOI: https://doi.org/10.1146/annurev.ecolsys.33.010802.150448
WILLIAMS, S., 1997.– Patterns of mammalian species richness in the Australian tropical rainforests: are extinctions during historical contractions of the rainforest the primary determinants of current regional patterns in biodiversity?- Wildlife Research, 24: 513-530. DOI: https://doi.org/10.1071/WR96040
WILLIAMS, S. E., SHOO, L. P., HENROID, R. & PEARSON, R. G., 2010.– Elevational gradients in species abundance, assemblage structure and energy use of rainforest birds in the Australian Wet Tropics bioregion.– Austral Ecology, 35: 650-664. DOI: https://doi.org/10.1111/j.1442-9993.2009.02073.x
YELA, J. L. & HOLYOAK, M., 1997.– Effects of moonlight and meteorological factors on light and bait trap catches of noctuid moths (Lepidoptera: Noctuidae).– Population Ecology, 26: 1283-1290. DOI: https://doi.org/10.1093/ee/26.6.1283
ZOU, Y., SANG, W., HAUSMANN, A. & AXMACHER, J. C., 2016.– High phylogenetic diversity is preserved in species-poor high-elevation temperate moth assemblages.– Scientific Reports 6: 23045; doi:10.1038/srep23045(2016). DOI: https://doi.org/10.1038/srep23045
##submission.downloads##
Pubblicato
Come citare
Fascicolo
Sezione
Licenza
TQuesto lavoro è fornito con la licenza Creative Commons Attribuzione 4.0 Internazionale.
L'autore mantiene i suoi diritti di marchio e di brevetto su qualsiasi processo o procedura contenuta nell'articolo.
L'autore conserva il diritto di condividere, distribuire, eseguire e comunicare pubblicamente l'articolo pubblicato su SHILAP Revista de lepidopterología, con il riconoscimento iniziale della sua pubblicazione su SHILAP Revista de lepidopterología.
L'autore conserva il diritto di pubblicare successivamente il suo lavoro, dall'utilizzo dell'articolo alla pubblicazione in un libro, a condizione che ne indichi la pubblicazione iniziale su SHILAP Revista de lepidopterología.
Ogni invio a SHILAP Revista de lepidopterología deve essere accompagnato dall'accettazione del copyright e dal riconoscimento della paternità. Accettandoli, gli autori mantengono il copyright del loro lavoro e accettano che l'articolo, se accettato per la pubblicazione da SHILAP Revista de lepidopterología, sarà concesso in licenza d'uso e distribuzione con licenza "Creative Commons Attribuzione 4.0 Internazionale" (CC BY 4.0), che consente a terzi di condividere e adattare il contenuto per qualsiasi scopo dando adeguato credito all'opera originale.
È possibile consultare la versione informativa e il testo legale testo legale della licenza qui. L'indicazione della Licenza CC BY 4.0 deve essere esplicitamente indicata in questo modo quando necessario.
A partire dal 2022, il contenuto della versione cartacea e digitale è concesso in licenza d'uso e distribuzione "Creative Commons Attribuzione 4.0 Internazionale" (CC BY 4.0), che consente a terzi di condividere e adattare il contenuto per qualsiasi scopo dando adeguato credito all'opera originale.
I contenuti precedenti della rivista sono stati pubblicati con una licenza di copyright tradizionale; tuttavia, l'archivio è disponibile ad accesso libero.
Quando si utilizzano i contenuti di SHILAP Revista de lepidopterología pubblicati prima dell'anno 2022, comprese figure, tabelle o qualsiasi altro materiale in formato cartaceo o elettronico, gli autori degli articoli devono ottenere l'autorizzazione del titolare del copyright. Le responsabilità legali, finanziarie e penali a questo riguardo appartengono all'autore o agli autori.
In applicazione del Principio di Priorità del Codice Internazionale di Nomenclatura Zoologica, non è consentito depositare in archivi, siti web personali o simili, versioni diverse da quella pubblicata dall'editore.