Geometridae Stephens, 1829 from different altitudes in Western Himalayan Protected Areas of Uttarakhand, India (Lepidoptera: Geometridae)

Authors

DOI:

https://doi.org/10.57065/shilap.978

Keywords:

Lepidoptera, Geometridae, diversity, altitude, Western Himalaya, indicator species, Uttarakhand, India

Abstract

The Geometridae Stephens, 1829 are considered as an excellent model group to study insect diversity patterns across elevational gradients globally. This paper documents 168 species of Geometridae belonging to 99 genera and 5 subfamilies from different Protected Areas in a Western Himalayan state, Uttarakhand in India. The list includes 36 species reported for the first time from Uttarakhand, which hitherto was poorly explored and reveals significant altitudinal range expansion for at least 15 species. We sampled different vegetation zones across an elevation gradient stretching from 600 m up to 3600 m, in Dehradun-Rajaji landscape, Nanda Devi National Park, Valley of Flowers National Park, Govind Wildlife Sanctuary, Gangotri National Park and Askot Wildlife Sanctuary. The subfamily Ennominae represented the maximum number of species, and the species of subfamily Larentiinae were found to be more restricted to higher elevation areas. Western Mixed Coniferous forest held the greatest number of species, whereas the Subalpine forest was characterized by the highest number of indicator species identified through Indicator Species Analysis. While Indo-Malayan species dominated the assemblage composition, the maximum number of Himalayan endemics suggested that these species are long adapted to the Himalayan climatic gradient and ongoing climate-mediated perturbation may hamper their future survival.

Downloads

Download data is not yet available.

References

ASHTON, L. A., ODELL, E. H., BURWELL, C. J., MAUNSELL, S. C., NAKAMURA, A., MCDONALD, W. J. F. & KITCHING, R. L., 2016.– Altitudinal patterns of moth diversity in tropical and subtropical Australian rainforests.– Austral Ecology, 41(2): 197-208. DOI: https://doi.org/10.1111/aec.12309

ASHTON, L. A., KITCHING, R. L., MAUNSELL, S., BITO, D. & PUTLAND, D., 2011.– Macrolepidopteran assemblages along an altitudinal gradient in subtropical rainforest exploring indicators of climate change.– Memoirs of the Queensland Museum, 55: 375-389.

AXMACHER, J., HOLTMANN, G., SCHEUERMANN, L., BREHM, G., MÜLLER-HOHENSTEIN, K. & FIEDLER, K., 2004.– Diversity of geometrid moths (Lepidoptera: Geometridae) along an Afrotropical elevational rainforest transect.– Diversity and Distributions, 10: 293-302. DOI: https://doi.org/10.1111/j.1366-9516.2004.00101.x

BARLOW, H. S., 1982.– An Introduction to the Moths of South East Asia: 305 pp. Malayan Nature Society, Kuala Lumpur.

BECK, J., BREHM, G. & FIEDLER, K., 2011.– Links between the environment, abundance and diversity of Andean moths.– Biotropica, 43: 208-217. DOI: https://doi.org/10.1111/j.1744-7429.2010.00689.x

BECK, J., SCHULZE, C. H., LINSENMAIR, K. E. & FIEDLER, K., 2002.– From forest to farmland: diversity of geometrid moths along two habitat gradients in Borneo.– Journal of Tropical Ecology, 17: 33-51. DOI: https://doi.org/10.1017/S026646740200202X

BENISTON, M., DIAZ, H. F. & BRADLEY, R. S., 1997.– Climate change at high elevation sites: an overview.– Climate Change, 36: 233-251. DOI: https://doi.org/10.1023/A:1005380714349

BREHM, G. & FIEDLER, K., 2003.– Faunal composition of geometrid moths changes with altitude in an Andean montane rain forest.– Journal of Biogeography, 30: 431-440. DOI: https://doi.org/10.1046/j.1365-2699.2003.00832.x

BREHM, G., COLWELL, R. K. & KLUGE, J., 2007.– The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient.– Global Ecology and Biogeography, 16: 205-217. DOI: https://doi.org/10.1111/j.1466-8238.2006.00281.x

BREHM, G., STRUTZENBERGER, P. & FIEDLER, K., 2013.– Phylogenetic diversity of geometrid moths decreases with elevation in the tropical Andes.– Ecography, 36: 1247-1253. DOI: https://doi.org/10.1111/j.1600-0587.2013.00030.x

BREHM, G., SÜSSENBACH, D. & FIEDLER, K., 2003.– Unique elevational patterns of geometrid moths in an Andean montane rainforest.– Ecography, 26: 456-466. DOI: https://doi.org/10.1034/j.1600-0587.2003.03498.x

BURWELL, C. J. & NAKAMURA, A., 2011.– Distribution of ant species along an altitudinal transect in continuous rainforest in sub-tropical Queensland, Australia.– Memoirs of Queensland Museum, 55: 391-411.

CHAMPION, H. G. & SETH, S. K., 1968.– A revised survey of forest types of India: 404 pp. Government of India Press, New Delhi.

CHAWLA, A., RAJKUMAR, S., SINGH, K. N., LAL B. & THUKRAL, A. K., 2008.– Plant species diversity along an altitudinal gradient of Bhabha Valley in Western Himalaya.– Journal of Mountain Science, 5: 157–177. DOI: https://doi.org/10.1007/s11629-008-0079-y

CHEN, I. C., SHIU, H. J., BENEDICK, S., HOLLOWAY, J. D., CHEY, V. K., BARLOW, H. S., HILL, J. K. & THOMAS, C. D., 2009.– Elevation increases in moth assemblages over 42 years on a tropical mountain.– Proceedings of the National Academy of Sciences, 106(5): 1479-1483. DOI: https://doi.org/10.1073/pnas.0809320106

CHEY, V. K., HOLLOWAY, J. D. & SPEIGHT, M. R., 1997.– Diversity of moths in forest plantations and natural forests in Sabah.– Bulletin of Entomological Research, 87: 371-385. DOI: https://doi.org/10.1017/S000748530003738X

COLWELL, R. K. & CODDINGTON, J. A., 1994.– Estimating terrestrial biodiversity through extrapolation.– Philosophical transactions of the Royal Society London, 345: 101-118. DOI: https://doi.org/10.1098/rstb.1994.0091

DUFRENE, M. & LEGENDRE, P., 1997.– Species assemblages and indicator species: the need for a flexible asymmetrical approach.– Ecological Monographs, 67: 345-366. DOI: https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2

FOSTER, P., 2001.– The potential negative impacts of global climate change on tropical montane cloud forests.– Earth-Science Reviews, 55: 73-106. DOI: https://doi.org/10.1016/S0012-8252(01)00056-3

GRAHAM, C. H., PARRA, J. L., RAHBEK, C. & MCGUIRE, J. A., 2009.– Phylogenetic structure in tropical hummingbird communities.– Proceedings of the National Academy of Science, 106: 19673-19678. DOI: https://doi.org/10.1073/pnas.0901649106

HAMPSON, G. F., 1892.– Fauna of British India including Ceylon and Burma-Moths, 1: 527 pp. Taylor & Francis, London.

HAMPSON, G. F., 1894.– Fauna of British India including Ceylon and Burma-Moths, 2: 609 pp. Taylor & Francis, London.

HAMPSON, G. F., 1895.– Fauna of British India including Ceylon and Burma-Moths, 3: 546 pp. Taylor & Francis, London.

HAMPSON, G. F., 1896.– Fauna of British India including Ceylon and Burma-Moths, 4: 594 pp. Taylor & Francis, London.

HILT, N., BREHM, G. & FIEDLER, K., 2006.– Diversity and ensemble composition of geometrid moths along a successional gradient in the Ecuadorian Andes.– Journal of Tropical Ecology, 22: 155-166. DOI: https://doi.org/10.1017/S0266467405003056

HODKINSON, I. D., 2005.– Terrestrial insects along elevation gradients: species and community responses to altitude.– Biological Reviews, 80: 489-513. DOI: https://doi.org/10.1017/S1464793105006767

HARUTA, T. (eds.), 1994.– Moths of Nepal, Part 3, Tinea. 14 (Supplement 1): 171 pp. Japan Heterocerists’ Society, Tokyo.

HARUTA, T. (eds.), 1995.– Moths of Nepal, Part 4, Tinea. 14 (Supplement 2): 206 pp. Japan Heterocerists’ Society, Tokyo.

HARUTA, T. (eds.), 1998.– Moths of Nepal, Part 5, Tinea. 15 (Supplement 1): 330 pp. Japan Heterocerists’ Society, Tokyo.

HARUTA, T. (eds.), 2000.– Moths of Nepal, Part 6, Tinea. 16 (Supplement 1): 163 pp. Japan Heterocerists’ Society, Tokyo.

HOLLOWAY, J. D., 1985.– Moths as indicator organisms for categorizing rain-forest and monitoring changes and regeneration process.– In A. C. CHADWICK & S. L. SUTTON (eds). Tropical rain-forest: the Leeds Symposium. Leeds Philosophical and Literary Society: 235-242 pp. Leeds.

HOLLOWAY, J. D., 1987.– Macrolepidoptera diversity in the Indo-Australian tropics, geographic, biotopic and taxonomic variations.– Biological Journal of the Linnean Society, 30: 325-341. DOI: https://doi.org/10.1111/j.1095-8312.1987.tb00306.x

HOLLOWAY, J. D., 1993.– The moths of Borneo (part 11); Family Geometridae: Subfamilies Ennominae.– Malayan Nature Journal, 47: 1-309.

HOLLOWAY, J. D., 1996.– The moths of Borneo (part 9); Family Geometridae: Subfamilies Oenochrominae, Desmobathrinae, Geometrinae.– Malayan Nature Journal, 49: 147-326.

HOLLOWAY, J. D., 1997.– The moths of Borneo (part 10); Family Geometridae: Subfamilies Subfamilies Sterrhinae, Larentiinae, Addenda to other subfamilies.– Malayan Nature Journal, 51: 1-242.

HOLLOWAY, J. D., 1998.– The impact of traditional and modern cultivation practices, including forestry, on Lepidoptera diversity in Malaysia and Indonesia.– In D. M. NEWBERY. Dynamics of Tropical Communities: 567-597 pp. Cambridge University Press, London.

INTACHAT, J., HOLLOWAY, J. D. & SPEIGHT, M. R., 1997.– The effects of different forest management practices on geometrid moth populations and their diversity in Peninsular Malaysia.– Journal of Tropical Forest Science, 9: 411-430.

KESSLER, M., 2002.– The elevational gradient of Andean plant endemism: varying influences of taxon-specific traits and topography at different taxonomic levels.– Journal of Biogeography, 29: 1159-1165. DOI: https://doi.org/10.1046/j.1365-2699.2002.00773.x

KITCHING, R. L., ORR, A. G., THALIB, L., MITCHELL, H., HOPKINS, M. S. & GRAHAM, A. W., 2000.– Moth assemblages as indicators of environmental quality in remnants of upland Australian rain forest.– Journal of Applied Ecology, 37: 284-297. DOI: https://doi.org/10.1046/j.1365-2664.2000.00490.x

MCGEACHIE, W. J., 1989.– The effects of moonlight illuminance, temperature and wind speed on light-trap catches of moths.– Bulletin of Entomological Research, 79: 185-192. DOI: https://doi.org/10.1017/S0007485300018162

PARMESAN, C., 2006.– Ecological and evolutionary responses to recent climate change.– Annual Review of Ecology, Evolution, and Systematics, 37: 637-669. DOI: https://doi.org/10.1146/annurev.ecolsys.37.091305.110100

RAHBECK, C., 1997.– The relationship among area, elevation, and regional species richness in Neotropical birds.– The American Naturalist, 149: 875-902. DOI: https://doi.org/10.1086/286028

SANDERS, N. J. & RAHBEK, C., 2012.– The patterns and causes of elevational diversity gradients.– Ecography, 35: 1-3. DOI: https://doi.org/10.1111/j.1600-0587.2011.07338.x

SCHULZE, C. H., 2000.– Auswirkungen anthropogener Störungen auf die Diversität von Herbivoren-Analyse von Nachtfalterzönosen entlang von Habitatgradienten in Ost- Malaysia. 350 pp. Ph. D. Thesis, University of Bayreuth.

SCOBLE, M. J. & HAUSMANN, A., 2007.– Online list of valid and nomenclaturally available names of the Geometridae of the world. Available from http://www.lepbarcoding.org/cl_geometridae.php (accessed 4th February, 2016).

SCOBLE, M. J., 1995.– The Lepidoptera: Form, Function and Diversity: 420 pp. The Natural History Museum and Oxford University Press, Oxford.

SCOBLE, M. J., GASTON, K. J. & CROOK, A., 1995.– Using taxonomic data to estimate species richness in Geometridae.– Journal of the Lepidopterists’ Society, 49: 136-147.

SMETACEK, P., 2008.– Moths recorded from different elevations in Nainital District, Kumaon Himalaya, India.– Bionotes, 10: 5-15.

STORK, N. & BRENDALL, M., 1990.– Variation in the insect fauna of Sulawesi trees with season, altitude and forest type. Insects and the rain forests of South East Asia.– Wallacea, 7: 173-190.

SZUMIK, C., AAGESEN, L., CASAGRANDA, D., ARZAMENDIA, V., BALDO, D., CLAPS, L. E., CUEZZO, F., GOMEZ, J. M. D., DI GIACOMO, A., GIRAUDO, A., GOLOBOFF, P., GRAMAJO, C., KOPUCHIAN, C., KRETZSCHMAR, S., LIZARRALDE, M., MOLINA, A., MOLLERACH, M., NAVARRO, F., NOMDEDEU, S., PANIZZA, A., PEREYRA, V.V., SANDOVAL, M., SCROCCHI, G. & ZULOAGA, F. O., 2012.– Detecting areas of endemism with a taxonomically diverse data set: plants, mammals, reptiles, amphibians, birds and insects from Argentina.– Cladistics, 28: 317-329. DOI: https://doi.org/10.1111/j.1096-0031.2011.00385.x

WALIA, V. K., 2005.– Insecta: Lepidoptera: Geometridae: 181-190.– In H. S. MEHTA (ed.). Fauna of Western Himalaya, 2: 358 pp. Zoological Survey of India, Kolkata.

WEBB, C. O., ACKERLY, D. D., MCPEEK, M. A. & DONOGHUE, M. J., 2002.– Phylogenies and community ecology.– Annual Review of Ecological Systematics, 33: 475-505. DOI: https://doi.org/10.1146/annurev.ecolsys.33.010802.150448

WILLIAMS, S., 1997.– Patterns of mammalian species richness in the Australian tropical rainforests: are extinctions during historical contractions of the rainforest the primary determinants of current regional patterns in biodiversity?- Wildlife Research, 24: 513-530. DOI: https://doi.org/10.1071/WR96040

WILLIAMS, S. E., SHOO, L. P., HENROID, R. & PEARSON, R. G., 2010.– Elevational gradients in species abundance, assemblage structure and energy use of rainforest birds in the Australian Wet Tropics bioregion.– Austral Ecology, 35: 650-664. DOI: https://doi.org/10.1111/j.1442-9993.2009.02073.x

YELA, J. L. & HOLYOAK, M., 1997.– Effects of moonlight and meteorological factors on light and bait trap catches of noctuid moths (Lepidoptera: Noctuidae).– Population Ecology, 26: 1283-1290. DOI: https://doi.org/10.1093/ee/26.6.1283

ZOU, Y., SANG, W., HAUSMANN, A. & AXMACHER, J. C., 2016.– High phylogenetic diversity is preserved in species-poor high-elevation temperate moth assemblages.– Scientific Reports 6: 23045; doi:10.1038/srep23045(2016). DOI: https://doi.org/10.1038/srep23045

Published

2017-03-30

How to Cite

Sanyal, A. K., Dey, P., Uniyal, V. P., Chandra, K., & Raha, A. (2017). Geometridae Stephens, 1829 from different altitudes in Western Himalayan Protected Areas of Uttarakhand, India (Lepidoptera: Geometridae). SHILAP Revista De lepidopterología, 45(177), 143–163. https://doi.org/10.57065/shilap.978

Issue

Section

ISSUE

Most read articles by the same author(s)