Digestive system formation during metamorphosis of Carposina sasakii Matsumura, 1900 (Lepidoptera: Carposinidae)
DOI :
https://doi.org/10.57065/shilap.327Mots-clés :
Lepidoptera, Carposinidae, Carposina sasakii, digestive system, pupa, development, morphology, feeding, ChinaRésumé
The purpose of this study is to investigate the adaptive mechanism of morphological and structural changes to habits, during the metamorphosis development of Carposina sasakii Matsumura, 1900. Traditional dissection, paraffin section, and scanning electron microscopy techniques were used to study the morphological structure and cytohistology of the digestive system in different developmental stages of C. sasakii by classical comparativemorphology study. In order to adapt to the change of feeding habits from solid in the larva stage to liquid in the adult stage, the digestive tract of C. sasakii reconstructed in the pupal stage. The crop of the foregut transformed from a spherical shape in the larval stage to an enlarged lateral, accessory, bag-like structure beyond middle of pupal stage and in the adult stage. The hindgut transformed from a columnar structure in the larval stage to a dilated rectal sac at the end of the hindgut in the adult stage. The morphological changes of the digestive tract provided the basis for the C. sasakii to adapt to the changes of food habits and environment. In addition, the present study provides a basis for better understanding of pupal reconstruction of digestive tract. It also lays the foundation for the nutritional physiology and co-evolution between C. sasakii at different stages and its host plant, while providing morphological data for the toxicological and pathological research of this significant agricultural pest.
Téléchargements
Références
AKPAN, E. B. & OKORIE, G. T., 2003.– Allometric growth and performance of the gastric caeca of Zonocerus variegatus (L.) (Orthoptera: Pyrgomorphidae).– Acta entomologica Sinica, 46(5): 558-566.
BYERS, J. R., 1971.– Metamorphosis of the perirectal Malpighian tubules in the mealworm Tenebrio molitor L. (Coleoptera, Tenebrionidae). II. Ultrastructure and role of autophagic vacuoles.– Canadian Journal of Zoology, 49(8): 1185-1191. DOI: https://doi.org/10.1139/z71-179
CHAUTHANI, A. R. & CALLAHAN, P. S., 1967.– Developmental Morphology of the Alimentary Canal of Heliothis zea (Lepidoptera: Noctuidae).– Annals of the Entomological Society of America, 60(6): 1136-1141. DOI: https://doi.org/10.1093/aesa/60.6.1136
ELSON, J. A., 1937.– A comparative study of Hemiptera.– Annals of the Entomological Society of America, 30(4): 579-597. DOI: https://doi.org/10.1093/aesa/30.4.579
FERNÁNDEZ-SEGURA, E., GARCÍA, J. M. & CAMPOS, A., 1990.– Scanning electron microscopic study of natural killer cell-mediated cytotoxicity.– Histology & Histopathology, 5(3): 305-310.
GONÇALVES, W. G., FERNANDES, K. M., SANTANA, W. C., MARTINS, G. F., ZANUNCIO, J. C. & SERRÃO, J. E., 2018.– Post-embryonic development of the Malpighian tubules in Apis mellifera (Hymenoptera) workers: morphology, remodeling, apoptosis, and cell proliferation.– Protoplasma, 255(2): 585-599. DOI: https://doi.org/10.1007/s00709-017-1171-3
GULLAN, P. J. & CRANSTON, P. S., 2000.– The insects: an outline of entomology: 624 pp. Blackwell Science, Oxford.
HÄCKER, G., 2000.– The morphology of apoptosis.– Cell & Tissue Research, 301(1): 5-17. DOI: https://doi.org/10.1007/s004410000193
HALLOCK, K. J., 2008.– Magnetic resonance microscopy of flows and compressions of the circulatory, respiratory, and digestive systems in pupae of the tobacco hornworm, Manduca sexta.– Journal of Insect Science, 8(1): 10. DOI: https://doi.org/10.1673/031.008.1001
HAMILTON, J. B. & JOHANSSON, M., 1955.– Influence of sex chromosomes and castration upon lifespan. Studies of meal moths, a species in which sex chromosomes are homogeneous in males and heterogeneous in females.– The Anatomical Record, 121(3): 565-577. DOI: https://doi.org/10.1002/ar.1091210308
HENSON, H., 1929.– On the development of the mid-gut in the larval stages of Vanessa urticae (Lepidoptera).– Quarterly Journal of Microscopy Science, 73(1): 87-105. DOI: https://doi.org/10.1242/jcs.s2-73.289.87
HONG, F., SONG, H. & AN, C. J., 2016.– Introduction to insect metamorphosis.– Chinese Journal of Applied Entomology, 53(1): 1-8.
HUANG, Z. J., ZHONG, Y. J., DENG, X. J., HE, X. R., LIANG, H. & PAN, Z., 2006.– Observation of the midgut and silk gland in silkworm during pupal-adult metamorphosis.– Journal of South China Agricultural University, 27(2): 100-103
IZZETOG˘ LU, G. T. & ÖBER, A., 2011.– Histological investigation of the rectal sac in Bombyx mori L.– Turkish Journal of Zoology, 35(2): 213-221. DOI: https://doi.org/10.3906/zoo-0811-7
JUDY, K. J. & GILBERT, L. I., 1969.– Morphology of the alimentary canal during the metamorphosis of Hyalophora cecropia (Lepidoptera: Saturniidae).– Annals of the Entomological Society of America, 62(6): 1438-1446. DOI: https://doi.org/10.1093/aesa/62.6.1438
JUDY, K. J. & GILBERT, L. I., 1970.– Histology of the alimentary canal during the metamorphosis of Hyalophora cecropia (L.).– Journal of Morphology, 131(3): 277-299. DOI: https://doi.org/10.1002/jmor.1051310304
KAFATOS, F. C., TARTAKOFF, A. M. & LAW, J. H., 1967.– Cocoonase I. Preliminary characterization of a proteolytic enzyme from silk moths.– Journal of Biological Chemistry, 242(7): 1477-1487. DOI: https://doi.org/10.1016/S0021-9258(18)96117-X
KAFATOS, F. C. & WILLIAMS, C. M., 1964.– Enzymatic mechanism for the escape of certain moths from their cocoons.– Science, 146(3643): 538-540. DOI: https://doi.org/10.1126/science.146.3643.538
KIM, D. S., LEE, J. H. & YIEM, M. S., 2001.– Temperature-dependent development of Carposina sasakii (Lepidoptera: Carposinidae) and its stage emergence models.– Environmental Entomology, 30(2): 298-305. DOI: https://doi.org/10.1603/0046-225X-30.2.298
KOLOSOV, D. & O’DONNELL, M. J., 2019.– The Malpighian tubules and cryptonephric complex in lepidopteran larvae: 165-202.– In R. JURENKA (ed.). Advances in Insect Physiology, 56: 1-343. DOI: https://doi.org/10.1016/bs.aiip.2019.01.006
KONDO, T., TAKEUCHI, K., DOI, Y., YONEMURA, S., NAGATA, S. & TSUKITA, S., 1997.– ERM (ezrin/radixin/moesin)-based molecular mechanism of microvillar breakdown at an early stage of apoptosis.– Journal of Cell Biology, 139(3): 749-758. DOI: https://doi.org/10.1083/jcb.139.3.749
LI, X. F., FENG, D. D., XUE, Q. Q., MENG, T. L., MA, R. Y., DENG, A., et al., 2019.– Density-Dependent Demography and Mass-Rearing of Carposina sasakii (Lepidoptera: Carposinidae) Incorporating Life Table Variability.– Journal of economic entomology, 112(1): 255-265. DOI: https://doi.org/10.1093/jee/toy325
LI, Y. Y., SUN, L. N., TIAN, Z. Q., HAN, H. B., ZHANG, H. J., QIU, G. S., WY, Y. & YUE, Q., 2018.– Gut bacterial community diversity in Carposina sasakii and Grapholitha molesta.– The Journal of Applied Ecology, 29(10): 3449-3456.
LU, X., HE, H. & XI, G. S., 2009.– The microstructure of alimentary canal and Malpighian tubules of Teleogyllus emma.– Chinese Bulletin of Entomology, 46(5): 764-767.
NORRIS, M. J., 1934.– Contributions towards the Study of Insect Fertility.– III.* Adult Nutrition, Fecundity, and Longevity in the Genus Ephestia (Lepidoptera, Phycitidae).– Proceedings of the Zoological Society of London, 104(2): 333-360. DOI: https://doi.org/10.1111/j.1469-7998.1934.tb07756.x
O’BRIEN, D. M., BOGGS, C. L. & FOGEL, M. L., 2004.– Making eggs from nectar: the role of life history and dietary carbon turnover in butterfly reproductive resource allocation.– Oikos, 105(2): 279-291. DOI: https://doi.org/10.1111/j.0030-1299.2004.13012.x
O’BRIEN, D. M., FOGEL, M. L. & BOGGS, C. L., 2002.– Renewable and nonrenewable resources: amino acid turnover and allocation to reproduction in Lepidoptera.– Proceedings of the National Academy of Sciences, 99(7): 4413-4418. DOI: https://doi.org/10.1073/pnas.072346699
ÖZYURT, N., AMUTKAN, D., POLAT, I., KOCAMAZ, T., CANDAN, S. & SULUDERE, Z., 2017.– Structural and ultrastructural features of the Malpighian tubules of Dolycoris baccarum (Linnaeus 1758),(Heteroptera: Pentatomidae).– Microscopy Research and Technique, 80(4): 357-363. DOI: https://doi.org/10.1002/jemt.22802
PAUCHET, Y., MUCK, A., SVATOS, A., HECKEL, D. G. & PREISS, S., 2008.– Mapping the larval midgut lumen proteome of Helicoverpa armigera, a generalist herbivorous insect.– Journal of Proteome Research, 7(4): 1629-1639. DOI: https://doi.org/10.1021/pr7006208
PHILLIPS, J. E., 1970.– Apparent transport of water by insect excretory systems.– American Zoologist, 10(3): 413-436. DOI: https://doi.org/10.1093/icb/10.3.413
RAMSAY, J. A., 1976.– The rectal complex in the larvae of Lepidoptera.– Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 274(932): 203-226. DOI: https://doi.org/10.1098/rstb.1976.0043
REYNOLDS, S. E. & BELLWARD, K., 1989.– Water balance in Manduca sexta caterpillars: water recycling from the rectum.– Journal of Experimental Biology, 141(1): 33-45. DOI: https://doi.org/10.1242/jeb.141.1.33
RIGONI, G. M., TOMOTAKE, M. E. M. & CONTE, H., 2004.– Morphology of malpighian tubules of Diatraea saccharalis (F.)(Lepidoptera: Crambidae) at final larval development.– Cytologia, 69(1): 1-6. DOI: https://doi.org/10.1508/cytologia.69.1
ROWLAND, I. J. & GOODMAN, W. G., 2016.– Magnetic Resonance Imaging of Alimentary Tract Development in Manduca sexta.– PloS one, 11(6): e0157124. DOI: https://doi.org/10.1371/journal.pone.0157124
SILVA-DE-MORAES RLM, C.-L. C., 1976.– Comparative studies of Malpighian tubules from larvae, pupae and adults workers of Melipona quadrifasciata anthidioides Lep. (Apidae, Meliponinae).– Papéis Avulsos de Zoologia, 29: 249-257. DOI: https://doi.org/10.11606/0031-1049.1976.29.p249-257
TERRA, W. R., 1990.– Evolution of digestive systems of insects.– Annual Review of Entomology, 35(1): 181-200. DOI: https://doi.org/10.1146/annurev.en.35.010190.001145
TERRA, W. R., BARROSO, I. G., DIAS, R. O. & FERREIRA, C., 2019.– Molecular physiology of insect midgut.– In R. JURENKA (ed.). Advances in Insect Physiology, 56: 177-163. DOI: https://doi.org/10.1016/bs.aiip.2019.01.004
TETTAMANTI, G., MALAGOLI, D., MARCHESINI, E., CONGIU, T., EGUILEOR, M. D. & OTTAVIANI, E., 2006.– Oligomycin A induces autophagy in the IPLB-LdFB insect cell line.– Cell & Tissue Research, 326(1): 179-186. DOI: https://doi.org/10.1007/s00441-006-0206-4
THUMMEL, C. S., 2001.– Steroid-triggered death by autophagy.– Bioessays, 23(8): 677-682. DOI: https://doi.org/10.1002/bies.1096
TONG, D. D., WU, Y. L., ZHENG, G. L. & LI, C. Y., 2013.– Research advances on insect midgut cell culture in vitro.– Journal of Environmental Entomology, 35(3): 390-398.
TREHERNE, J. E., 1967.– Gut Absorption.– Annual Review of Entomology, 12(1): 43-58. DOI: https://doi.org/10.1146/annurev.en.12.010167.000355
TSUJIMOTO, Y. & SHIMIZU, S., 2005.– Another way to die: autophagic programmed cell death.– Cell Death & Differentiation, 12(2): 1528-1534. DOI: https://doi.org/10.1038/sj.cdd.4401777
VOLKMANN, A. & PETERS, W., 1989.– Investigations on the midgut caeca of mosquito larvae—II. Functional aspects.– Tissue and Cell, 21(2): 253-261. DOI: https://doi.org/10.1016/0040-8166(89)90070-0
WANG, H. W., ZHANG, C. H., CUI, W. Z., LIU, X. L., ZHOU, Y. C., CAI, Y. M., et al., 2005.– Studies on secretory organs of cocoonase and silkmoth vomiting fluid of silkworm, Bombyx mori.– Science of Sericulture, 31(2): 136-140.
WIGGLESWORTH, V. B., 1972.– The principles of insect physiology: VIII + 827 pp. Chapman and Hall, London/New York. DOI: https://doi.org/10.1007/978-94-009-5973-6
XIONG, Q., LI, J., XUE, J. L., ZHAO, F. & XIE, Y. P., 2011.– Microstructure of Alimentary Canal and Malpighian Tubules of the Larvae of Carposina sasakii (Insecta: Lepidoptera: Carposinidae).– Sichuan Journal of Zoology, 30(5): 753-755+663.
YANG, J. P., 2006.– Improvement of traditional paraffin section preparation methods.– Journal of Biology, 23(1): 45-46.
ZENG, B. J. & FENG, Q. L., 2014.– Study of insect metamorphosis.– Chinese Journal of Applied Entomology, 51(2): 317-328.
ZHANG, Z. W., MEN, L. N., WU, Z. Y., MENG, T. L. & MA, R. Y., 2018.– Studies on fitness of Carposina sasakii Matsumura (Lepidoptera: Carposinidae) to different varieties of Malus pumila Miller apples.– Journal of Shanxi Agricultural University (Natural Science Edition), 38(7): 1-7.
Téléchargements
Publiée
Comment citer
Numéro
Rubrique
Licence
(c) Tous droits réservés O. Xue, D. Feng, L. Men, Y. Zhang, J. Li, A. Den, Y. Peng, R. Ma, Z. Zhang 2021
Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
L'auteur conserve ses droits de marque et de brevet sur tout procédé ou procédure figurant dans l'article.
L'auteur conserve le droit de partager, distribuer, exécuter et communiquer publiquement l'article publié dans SHILAP Revista de lepidopterología, avec une reconnaissance initiale de sa publication dans SHILAP Revista de lepidopterología.
L'auteur conserve le droit de procéder à une publication ultérieure de son travail, de l'utilisation de l'article à sa publication dans un livre, à condition d'indiquer sa publication initiale dans le SHILAP Revista de lepidopterología.
Chaque soumission à SHILAP Revista de lepidopterología doit être accompagnée d'une acceptation des droits d'auteur et de la mention de la paternité. En les acceptant, les auteurs conservent le droit d'auteur de leur travail et acceptent que l'article, s'il est accepté pour publication par le SHILAP Revista de lepidopterología, soit autorisé à être utilisé et distribué sous une licence "Creative Commons Attribution 4.0 International" (CC BY 4.0) ce qui permet une utilisation, une distribution et une reproduction sans restriction sur tout support, à condition que l'auteur et la source originale soient mentionnés.
Vous pouvez lire ici les informations de base et le texte légal de la licence. L'indication de la licence CC BY 4.0 doit être expressément mentionnée de cette manière lorsque cela est nécessaire.
À partir de 2022, le contenu de la version imprimée et numérique est soumis à une licence d'utilisation et de distribution "Creative Commons Attribution 4.0 International" (CC BY 4.0), ce qui permet une utilisation, une distribution et une reproduction sans restriction sur tout support, à condition que l'auteur et la source originale soient mentionnés.
Le contenu antérieur de la revue a été publié sous une licence de droit d'auteur traditionnelle; toutefois, les archives sont disponibles en libre accès.
Lors de l'utilisation du contenu de SHILAP Revista de lepidopterología publié avant l'année 2022, y compris les figures, les tableaux ou tout autre matériel sous forme imprimée ou électronique appartenant aux auteurs des articles, les auteurs doivent obtenir l'autorisation du détenteur des droits d'auteur. Les responsabilités légales, financières et pénales à cet égard incombent à l'auteur ou aux auteurs.
En application du Principe de Priorité du Code international de nomenclature zoologique, aucune autre version que celle publiée par l'éditeur ne peut être déposée dans des dépôts, des sites web personnels ou similaires.