Formación del sistema digestivo durante la metamorphosis de Carposina sasakii Matsumura, 1900 (Lepidoptera: Carposinidae)
DOI:
https://doi.org/10.57065/shilap.327Palabras clave:
Lepidoptera, Carposinidae, Carposina sasakii, sistema digestivo, pupa, metamorfosis, morfología, alimentación, ChinaResumen
El propósito de este estudio es investigar el mecanismo adaptativo de hábitos de los cambios morfológicos y estructurales, durante el desarrollo de la metamorfosis de Carposina sasakii Matsumura, 1900. Fue usada la disección tradicional con parafina y el escaneado con microscopio electrónico, para el estudio de la estructura morfológica y citológica del sistema digestivo en diferentes estados del desarrollo de C. sasakii para el clásico estudio morfológico comparativo. En orden de adaptar el cambio de los hábitos alimenticios del sólido, en el estadio de larva, al líquido, en el estadio de adulto, el tracto digestivo de C. sasakii se reconstruye en el estadio pupal. El buche, a continuación del esófago, se transformó de una forma esférica en la etapa larval a una estructura lateral, accesoria, como una bolsa expandida más allá del estadio de pupa y el estadio adulto. El intestino se transformó de una estructura columnar en el estadio larval a un saco rectal dilatado al final del intestino en el estadio adulto. Los cambios morfológicos del tracto digestivo proporcionaron la base para que C. sasakii se adaptara a los cambios de hábitos en la comida y ambientales. Además, el estudio actual, proporciona una base para el mejor conocimiento de la reconstrucción del tracto digestivo de la pupa. También proporciona los cimientos para la fisiología nutritiva y la coevolución entre C. sasakii en sus diferentes etapas y su planta nutricia, mientras que se proporcionan los datos morfológicos para la investigación toxicológica y patológica de esta importante
plaga agrícola.
Descargas
Citas
AKPAN, E. B. & OKORIE, G. T., 2003.– Allometric growth and performance of the gastric caeca of Zonocerus variegatus (L.) (Orthoptera: Pyrgomorphidae).– Acta entomologica Sinica, 46(5): 558-566.
BYERS, J. R., 1971.– Metamorphosis of the perirectal Malpighian tubules in the mealworm Tenebrio molitor L. (Coleoptera, Tenebrionidae). II. Ultrastructure and role of autophagic vacuoles.– Canadian Journal of Zoology, 49(8): 1185-1191. DOI: https://doi.org/10.1139/z71-179
CHAUTHANI, A. R. & CALLAHAN, P. S., 1967.– Developmental Morphology of the Alimentary Canal of Heliothis zea (Lepidoptera: Noctuidae).– Annals of the Entomological Society of America, 60(6): 1136-1141. DOI: https://doi.org/10.1093/aesa/60.6.1136
ELSON, J. A., 1937.– A comparative study of Hemiptera.– Annals of the Entomological Society of America, 30(4): 579-597. DOI: https://doi.org/10.1093/aesa/30.4.579
FERNÁNDEZ-SEGURA, E., GARCÍA, J. M. & CAMPOS, A., 1990.– Scanning electron microscopic study of natural killer cell-mediated cytotoxicity.– Histology & Histopathology, 5(3): 305-310.
GONÇALVES, W. G., FERNANDES, K. M., SANTANA, W. C., MARTINS, G. F., ZANUNCIO, J. C. & SERRÃO, J. E., 2018.– Post-embryonic development of the Malpighian tubules in Apis mellifera (Hymenoptera) workers: morphology, remodeling, apoptosis, and cell proliferation.– Protoplasma, 255(2): 585-599. DOI: https://doi.org/10.1007/s00709-017-1171-3
GULLAN, P. J. & CRANSTON, P. S., 2000.– The insects: an outline of entomology: 624 pp. Blackwell Science, Oxford.
HÄCKER, G., 2000.– The morphology of apoptosis.– Cell & Tissue Research, 301(1): 5-17. DOI: https://doi.org/10.1007/s004410000193
HALLOCK, K. J., 2008.– Magnetic resonance microscopy of flows and compressions of the circulatory, respiratory, and digestive systems in pupae of the tobacco hornworm, Manduca sexta.– Journal of Insect Science, 8(1): 10. DOI: https://doi.org/10.1673/031.008.1001
HAMILTON, J. B. & JOHANSSON, M., 1955.– Influence of sex chromosomes and castration upon lifespan. Studies of meal moths, a species in which sex chromosomes are homogeneous in males and heterogeneous in females.– The Anatomical Record, 121(3): 565-577. DOI: https://doi.org/10.1002/ar.1091210308
HENSON, H., 1929.– On the development of the mid-gut in the larval stages of Vanessa urticae (Lepidoptera).– Quarterly Journal of Microscopy Science, 73(1): 87-105. DOI: https://doi.org/10.1242/jcs.s2-73.289.87
HONG, F., SONG, H. & AN, C. J., 2016.– Introduction to insect metamorphosis.– Chinese Journal of Applied Entomology, 53(1): 1-8.
HUANG, Z. J., ZHONG, Y. J., DENG, X. J., HE, X. R., LIANG, H. & PAN, Z., 2006.– Observation of the midgut and silk gland in silkworm during pupal-adult metamorphosis.– Journal of South China Agricultural University, 27(2): 100-103
IZZETOG˘ LU, G. T. & ÖBER, A., 2011.– Histological investigation of the rectal sac in Bombyx mori L.– Turkish Journal of Zoology, 35(2): 213-221. DOI: https://doi.org/10.3906/zoo-0811-7
JUDY, K. J. & GILBERT, L. I., 1969.– Morphology of the alimentary canal during the metamorphosis of Hyalophora cecropia (Lepidoptera: Saturniidae).– Annals of the Entomological Society of America, 62(6): 1438-1446. DOI: https://doi.org/10.1093/aesa/62.6.1438
JUDY, K. J. & GILBERT, L. I., 1970.– Histology of the alimentary canal during the metamorphosis of Hyalophora cecropia (L.).– Journal of Morphology, 131(3): 277-299. DOI: https://doi.org/10.1002/jmor.1051310304
KAFATOS, F. C., TARTAKOFF, A. M. & LAW, J. H., 1967.– Cocoonase I. Preliminary characterization of a proteolytic enzyme from silk moths.– Journal of Biological Chemistry, 242(7): 1477-1487. DOI: https://doi.org/10.1016/S0021-9258(18)96117-X
KAFATOS, F. C. & WILLIAMS, C. M., 1964.– Enzymatic mechanism for the escape of certain moths from their cocoons.– Science, 146(3643): 538-540. DOI: https://doi.org/10.1126/science.146.3643.538
KIM, D. S., LEE, J. H. & YIEM, M. S., 2001.– Temperature-dependent development of Carposina sasakii (Lepidoptera: Carposinidae) and its stage emergence models.– Environmental Entomology, 30(2): 298-305. DOI: https://doi.org/10.1603/0046-225X-30.2.298
KOLOSOV, D. & O’DONNELL, M. J., 2019.– The Malpighian tubules and cryptonephric complex in lepidopteran larvae: 165-202.– In R. JURENKA (ed.). Advances in Insect Physiology, 56: 1-343. DOI: https://doi.org/10.1016/bs.aiip.2019.01.006
KONDO, T., TAKEUCHI, K., DOI, Y., YONEMURA, S., NAGATA, S. & TSUKITA, S., 1997.– ERM (ezrin/radixin/moesin)-based molecular mechanism of microvillar breakdown at an early stage of apoptosis.– Journal of Cell Biology, 139(3): 749-758. DOI: https://doi.org/10.1083/jcb.139.3.749
LI, X. F., FENG, D. D., XUE, Q. Q., MENG, T. L., MA, R. Y., DENG, A., et al., 2019.– Density-Dependent Demography and Mass-Rearing of Carposina sasakii (Lepidoptera: Carposinidae) Incorporating Life Table Variability.– Journal of economic entomology, 112(1): 255-265. DOI: https://doi.org/10.1093/jee/toy325
LI, Y. Y., SUN, L. N., TIAN, Z. Q., HAN, H. B., ZHANG, H. J., QIU, G. S., WY, Y. & YUE, Q., 2018.– Gut bacterial community diversity in Carposina sasakii and Grapholitha molesta.– The Journal of Applied Ecology, 29(10): 3449-3456.
LU, X., HE, H. & XI, G. S., 2009.– The microstructure of alimentary canal and Malpighian tubules of Teleogyllus emma.– Chinese Bulletin of Entomology, 46(5): 764-767.
NORRIS, M. J., 1934.– Contributions towards the Study of Insect Fertility.– III.* Adult Nutrition, Fecundity, and Longevity in the Genus Ephestia (Lepidoptera, Phycitidae).– Proceedings of the Zoological Society of London, 104(2): 333-360. DOI: https://doi.org/10.1111/j.1469-7998.1934.tb07756.x
O’BRIEN, D. M., BOGGS, C. L. & FOGEL, M. L., 2004.– Making eggs from nectar: the role of life history and dietary carbon turnover in butterfly reproductive resource allocation.– Oikos, 105(2): 279-291. DOI: https://doi.org/10.1111/j.0030-1299.2004.13012.x
O’BRIEN, D. M., FOGEL, M. L. & BOGGS, C. L., 2002.– Renewable and nonrenewable resources: amino acid turnover and allocation to reproduction in Lepidoptera.– Proceedings of the National Academy of Sciences, 99(7): 4413-4418. DOI: https://doi.org/10.1073/pnas.072346699
ÖZYURT, N., AMUTKAN, D., POLAT, I., KOCAMAZ, T., CANDAN, S. & SULUDERE, Z., 2017.– Structural and ultrastructural features of the Malpighian tubules of Dolycoris baccarum (Linnaeus 1758),(Heteroptera: Pentatomidae).– Microscopy Research and Technique, 80(4): 357-363. DOI: https://doi.org/10.1002/jemt.22802
PAUCHET, Y., MUCK, A., SVATOS, A., HECKEL, D. G. & PREISS, S., 2008.– Mapping the larval midgut lumen proteome of Helicoverpa armigera, a generalist herbivorous insect.– Journal of Proteome Research, 7(4): 1629-1639. DOI: https://doi.org/10.1021/pr7006208
PHILLIPS, J. E., 1970.– Apparent transport of water by insect excretory systems.– American Zoologist, 10(3): 413-436. DOI: https://doi.org/10.1093/icb/10.3.413
RAMSAY, J. A., 1976.– The rectal complex in the larvae of Lepidoptera.– Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 274(932): 203-226. DOI: https://doi.org/10.1098/rstb.1976.0043
REYNOLDS, S. E. & BELLWARD, K., 1989.– Water balance in Manduca sexta caterpillars: water recycling from the rectum.– Journal of Experimental Biology, 141(1): 33-45. DOI: https://doi.org/10.1242/jeb.141.1.33
RIGONI, G. M., TOMOTAKE, M. E. M. & CONTE, H., 2004.– Morphology of malpighian tubules of Diatraea saccharalis (F.)(Lepidoptera: Crambidae) at final larval development.– Cytologia, 69(1): 1-6. DOI: https://doi.org/10.1508/cytologia.69.1
ROWLAND, I. J. & GOODMAN, W. G., 2016.– Magnetic Resonance Imaging of Alimentary Tract Development in Manduca sexta.– PloS one, 11(6): e0157124. DOI: https://doi.org/10.1371/journal.pone.0157124
SILVA-DE-MORAES RLM, C.-L. C., 1976.– Comparative studies of Malpighian tubules from larvae, pupae and adults workers of Melipona quadrifasciata anthidioides Lep. (Apidae, Meliponinae).– Papéis Avulsos de Zoologia, 29: 249-257. DOI: https://doi.org/10.11606/0031-1049.1976.29.p249-257
TERRA, W. R., 1990.– Evolution of digestive systems of insects.– Annual Review of Entomology, 35(1): 181-200. DOI: https://doi.org/10.1146/annurev.en.35.010190.001145
TERRA, W. R., BARROSO, I. G., DIAS, R. O. & FERREIRA, C., 2019.– Molecular physiology of insect midgut.– In R. JURENKA (ed.). Advances in Insect Physiology, 56: 177-163. DOI: https://doi.org/10.1016/bs.aiip.2019.01.004
TETTAMANTI, G., MALAGOLI, D., MARCHESINI, E., CONGIU, T., EGUILEOR, M. D. & OTTAVIANI, E., 2006.– Oligomycin A induces autophagy in the IPLB-LdFB insect cell line.– Cell & Tissue Research, 326(1): 179-186. DOI: https://doi.org/10.1007/s00441-006-0206-4
THUMMEL, C. S., 2001.– Steroid-triggered death by autophagy.– Bioessays, 23(8): 677-682. DOI: https://doi.org/10.1002/bies.1096
TONG, D. D., WU, Y. L., ZHENG, G. L. & LI, C. Y., 2013.– Research advances on insect midgut cell culture in vitro.– Journal of Environmental Entomology, 35(3): 390-398.
TREHERNE, J. E., 1967.– Gut Absorption.– Annual Review of Entomology, 12(1): 43-58. DOI: https://doi.org/10.1146/annurev.en.12.010167.000355
TSUJIMOTO, Y. & SHIMIZU, S., 2005.– Another way to die: autophagic programmed cell death.– Cell Death & Differentiation, 12(2): 1528-1534. DOI: https://doi.org/10.1038/sj.cdd.4401777
VOLKMANN, A. & PETERS, W., 1989.– Investigations on the midgut caeca of mosquito larvae—II. Functional aspects.– Tissue and Cell, 21(2): 253-261. DOI: https://doi.org/10.1016/0040-8166(89)90070-0
WANG, H. W., ZHANG, C. H., CUI, W. Z., LIU, X. L., ZHOU, Y. C., CAI, Y. M., et al., 2005.– Studies on secretory organs of cocoonase and silkmoth vomiting fluid of silkworm, Bombyx mori.– Science of Sericulture, 31(2): 136-140.
WIGGLESWORTH, V. B., 1972.– The principles of insect physiology: VIII + 827 pp. Chapman and Hall, London/New York. DOI: https://doi.org/10.1007/978-94-009-5973-6
XIONG, Q., LI, J., XUE, J. L., ZHAO, F. & XIE, Y. P., 2011.– Microstructure of Alimentary Canal and Malpighian Tubules of the Larvae of Carposina sasakii (Insecta: Lepidoptera: Carposinidae).– Sichuan Journal of Zoology, 30(5): 753-755+663.
YANG, J. P., 2006.– Improvement of traditional paraffin section preparation methods.– Journal of Biology, 23(1): 45-46.
ZENG, B. J. & FENG, Q. L., 2014.– Study of insect metamorphosis.– Chinese Journal of Applied Entomology, 51(2): 317-328.
ZHANG, Z. W., MEN, L. N., WU, Z. Y., MENG, T. L. & MA, R. Y., 2018.– Studies on fitness of Carposina sasakii Matsumura (Lepidoptera: Carposinidae) to different varieties of Malus pumila Miller apples.– Journal of Shanxi Agricultural University (Natural Science Edition), 38(7): 1-7.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 O. Xue, D. Feng, L. Men, Y. Zhang, J. Li, A. Den, Y. Peng, R. Ma, Z. Zhang
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
El autor retiene sus derechos de marca y patente sobre cualquier proceso o procedimiento dentro del artículo.
El autor retiene el derecho de compartir, distribuir, ejecutar y comunicar públicamente el artículo publicado en SHILAP Revista de lepidopterología, con reconocimiento inicial de su publicación en SHILAP Revista de lepidopterología.
El autor retiene el derecho para hacer una posterior publicación de su trabajo, de utilizar el artículo a publicarlo en un libro, siempre que indique su publicación inicial en SHILAP Revista de lepidopterología.
Cada envío a SHILAP Revista de lepidopterología debe ir acompañado de una aceptación de los derechos de autor y del reconocimiento de autoría. Al aceptarlos, los autores conservan los derechos de autor de su trabajo y aceptan que el artículo, si es aceptado para su publicación por SHILAP Revista de lepidopterología, tendrá una licencia de uso y distribución “Reconocimiento 4.0 Internacional de Creative Commons” (CC BY 4.0), que permite a terceros compartir y adaptar el contenido para cualquier propósito dando el crédito apropiado al trabajo original.
Puede consultar desde aquí la versión informativa y el texto legal de la licencia. La indicación de la licencia CC BY 4.0 debe indicarse expresamente de esta manera cuando sea necesario.
A partir de 2022, el contenido de la versión impresa y digital se encuentra bajo una licencia de uso y distribución “Reconocimiento 4.0 Internacional de Creative Commons” (CC BY 4.0), que permite a terceros compartir y adaptar el contenido para cualquier propósito dando el crédito apropiado al trabajo original.
El contenido anterior de la revista se publicó bajo una licencia tradicional de derechos de autor; sin embargo, el archivo está disponible para acceso gratuito.
Al usar el contenido de SHILAP Revista de lepidopterología publicado antes del año 2022, incluidas figuras, tablas o cualquier otro material en formato impreso o electrónico pertenecen a los autores de los artículos, los autores deben obtener el permiso del titular de los derechos de autor. Las responsabilidades legales, financieras y penales a este respecto pertenecen al autor(es).
En aplicación del Principio de Prioridad del Código Internacional de Nomenclatura Zoologica, no se autoriza el depósito en repositorios, páginas web personales o similares de cualquier otra versión distinta a la publicada por el editor.