Digestive system formation during metamorphosis of Carposina sasakii Matsumura, 1900 (Lepidoptera: Carposinidae)

Authors

DOI:

https://doi.org/10.57065/shilap.327

Keywords:

Lepidoptera, Carposinidae, Carposina sasakii, digestive system, pupa, development, morphology, feeding, China

Abstract

The purpose of this study is to investigate the adaptive mechanism of morphological and structural changes to habits, during the metamorphosis development of Carposina sasakii Matsumura, 1900. Traditional dissection, paraffin section, and scanning electron microscopy techniques were used to study the morphological structure and cytohistology of the digestive system in different developmental stages of C. sasakii by classical comparativemorphology study. In order to adapt to the change of feeding habits from solid in the larva stage to liquid in the adult stage, the digestive tract of C. sasakii reconstructed in the pupal stage. The crop of the foregut transformed from a spherical shape in the larval stage to an enlarged lateral, accessory, bag-like structure beyond middle of pupal stage and in the adult stage. The hindgut transformed from a columnar structure in the larval stage to a dilated rectal sac at the end of the hindgut in the adult stage. The morphological changes of the digestive tract provided the basis for the C. sasakii to adapt to the changes of food habits and environment. In addition, the present study provides a basis for better understanding of pupal reconstruction of digestive tract. It also lays the foundation for the nutritional physiology and co-evolution between C. sasakii at different stages and its host plant, while providing morphological data for the toxicological and pathological research of this significant agricultural pest.

Downloads

Download data is not yet available.

References

AKPAN, E. B. & OKORIE, G. T., 2003.– Allometric growth and performance of the gastric caeca of Zonocerus variegatus (L.) (Orthoptera: Pyrgomorphidae).– Acta entomologica Sinica, 46(5): 558-566.

BYERS, J. R., 1971.– Metamorphosis of the perirectal Malpighian tubules in the mealworm Tenebrio molitor L. (Coleoptera, Tenebrionidae). II. Ultrastructure and role of autophagic vacuoles.– Canadian Journal of Zoology, 49(8): 1185-1191. DOI: https://doi.org/10.1139/z71-179

CHAUTHANI, A. R. & CALLAHAN, P. S., 1967.– Developmental Morphology of the Alimentary Canal of Heliothis zea (Lepidoptera: Noctuidae).– Annals of the Entomological Society of America, 60(6): 1136-1141. DOI: https://doi.org/10.1093/aesa/60.6.1136

ELSON, J. A., 1937.– A comparative study of Hemiptera.– Annals of the Entomological Society of America, 30(4): 579-597. DOI: https://doi.org/10.1093/aesa/30.4.579

FERNÁNDEZ-SEGURA, E., GARCÍA, J. M. & CAMPOS, A., 1990.– Scanning electron microscopic study of natural killer cell-mediated cytotoxicity.– Histology & Histopathology, 5(3): 305-310.

GONÇALVES, W. G., FERNANDES, K. M., SANTANA, W. C., MARTINS, G. F., ZANUNCIO, J. C. & SERRÃO, J. E., 2018.– Post-embryonic development of the Malpighian tubules in Apis mellifera (Hymenoptera) workers: morphology, remodeling, apoptosis, and cell proliferation.– Protoplasma, 255(2): 585-599. DOI: https://doi.org/10.1007/s00709-017-1171-3

GULLAN, P. J. & CRANSTON, P. S., 2000.– The insects: an outline of entomology: 624 pp. Blackwell Science, Oxford.

HÄCKER, G., 2000.– The morphology of apoptosis.– Cell & Tissue Research, 301(1): 5-17. DOI: https://doi.org/10.1007/s004410000193

HALLOCK, K. J., 2008.– Magnetic resonance microscopy of flows and compressions of the circulatory, respiratory, and digestive systems in pupae of the tobacco hornworm, Manduca sexta.– Journal of Insect Science, 8(1): 10. DOI: https://doi.org/10.1673/031.008.1001

HAMILTON, J. B. & JOHANSSON, M., 1955.– Influence of sex chromosomes and castration upon lifespan. Studies of meal moths, a species in which sex chromosomes are homogeneous in males and heterogeneous in females.– The Anatomical Record, 121(3): 565-577. DOI: https://doi.org/10.1002/ar.1091210308

HENSON, H., 1929.– On the development of the mid-gut in the larval stages of Vanessa urticae (Lepidoptera).– Quarterly Journal of Microscopy Science, 73(1): 87-105. DOI: https://doi.org/10.1242/jcs.s2-73.289.87

HONG, F., SONG, H. & AN, C. J., 2016.– Introduction to insect metamorphosis.– Chinese Journal of Applied Entomology, 53(1): 1-8.

HUANG, Z. J., ZHONG, Y. J., DENG, X. J., HE, X. R., LIANG, H. & PAN, Z., 2006.– Observation of the midgut and silk gland in silkworm during pupal-adult metamorphosis.– Journal of South China Agricultural University, 27(2): 100-103

IZZETOG˘ LU, G. T. & ÖBER, A., 2011.– Histological investigation of the rectal sac in Bombyx mori L.– Turkish Journal of Zoology, 35(2): 213-221. DOI: https://doi.org/10.3906/zoo-0811-7

JUDY, K. J. & GILBERT, L. I., 1969.– Morphology of the alimentary canal during the metamorphosis of Hyalophora cecropia (Lepidoptera: Saturniidae).– Annals of the Entomological Society of America, 62(6): 1438-1446. DOI: https://doi.org/10.1093/aesa/62.6.1438

JUDY, K. J. & GILBERT, L. I., 1970.– Histology of the alimentary canal during the metamorphosis of Hyalophora cecropia (L.).– Journal of Morphology, 131(3): 277-299. DOI: https://doi.org/10.1002/jmor.1051310304

KAFATOS, F. C., TARTAKOFF, A. M. & LAW, J. H., 1967.– Cocoonase I. Preliminary characterization of a proteolytic enzyme from silk moths.– Journal of Biological Chemistry, 242(7): 1477-1487. DOI: https://doi.org/10.1016/S0021-9258(18)96117-X

KAFATOS, F. C. & WILLIAMS, C. M., 1964.– Enzymatic mechanism for the escape of certain moths from their cocoons.– Science, 146(3643): 538-540. DOI: https://doi.org/10.1126/science.146.3643.538

KIM, D. S., LEE, J. H. & YIEM, M. S., 2001.– Temperature-dependent development of Carposina sasakii (Lepidoptera: Carposinidae) and its stage emergence models.– Environmental Entomology, 30(2): 298-305. DOI: https://doi.org/10.1603/0046-225X-30.2.298

KOLOSOV, D. & O’DONNELL, M. J., 2019.– The Malpighian tubules and cryptonephric complex in lepidopteran larvae: 165-202.– In R. JURENKA (ed.). Advances in Insect Physiology, 56: 1-343. DOI: https://doi.org/10.1016/bs.aiip.2019.01.006

KONDO, T., TAKEUCHI, K., DOI, Y., YONEMURA, S., NAGATA, S. & TSUKITA, S., 1997.– ERM (ezrin/radixin/moesin)-based molecular mechanism of microvillar breakdown at an early stage of apoptosis.– Journal of Cell Biology, 139(3): 749-758. DOI: https://doi.org/10.1083/jcb.139.3.749

LI, X. F., FENG, D. D., XUE, Q. Q., MENG, T. L., MA, R. Y., DENG, A., et al., 2019.– Density-Dependent Demography and Mass-Rearing of Carposina sasakii (Lepidoptera: Carposinidae) Incorporating Life Table Variability.– Journal of economic entomology, 112(1): 255-265. DOI: https://doi.org/10.1093/jee/toy325

LI, Y. Y., SUN, L. N., TIAN, Z. Q., HAN, H. B., ZHANG, H. J., QIU, G. S., WY, Y. & YUE, Q., 2018.– Gut bacterial community diversity in Carposina sasakii and Grapholitha molesta.– The Journal of Applied Ecology, 29(10): 3449-3456.

LU, X., HE, H. & XI, G. S., 2009.– The microstructure of alimentary canal and Malpighian tubules of Teleogyllus emma.– Chinese Bulletin of Entomology, 46(5): 764-767.

NORRIS, M. J., 1934.– Contributions towards the Study of Insect Fertility.– III.* Adult Nutrition, Fecundity, and Longevity in the Genus Ephestia (Lepidoptera, Phycitidae).– Proceedings of the Zoological Society of London, 104(2): 333-360. DOI: https://doi.org/10.1111/j.1469-7998.1934.tb07756.x

O’BRIEN, D. M., BOGGS, C. L. & FOGEL, M. L., 2004.– Making eggs from nectar: the role of life history and dietary carbon turnover in butterfly reproductive resource allocation.– Oikos, 105(2): 279-291. DOI: https://doi.org/10.1111/j.0030-1299.2004.13012.x

O’BRIEN, D. M., FOGEL, M. L. & BOGGS, C. L., 2002.– Renewable and nonrenewable resources: amino acid turnover and allocation to reproduction in Lepidoptera.– Proceedings of the National Academy of Sciences, 99(7): 4413-4418. DOI: https://doi.org/10.1073/pnas.072346699

ÖZYURT, N., AMUTKAN, D., POLAT, I., KOCAMAZ, T., CANDAN, S. & SULUDERE, Z., 2017.– Structural and ultrastructural features of the Malpighian tubules of Dolycoris baccarum (Linnaeus 1758),(Heteroptera: Pentatomidae).– Microscopy Research and Technique, 80(4): 357-363. DOI: https://doi.org/10.1002/jemt.22802

PAUCHET, Y., MUCK, A., SVATOS, A., HECKEL, D. G. & PREISS, S., 2008.– Mapping the larval midgut lumen proteome of Helicoverpa armigera, a generalist herbivorous insect.– Journal of Proteome Research, 7(4): 1629-1639. DOI: https://doi.org/10.1021/pr7006208

PHILLIPS, J. E., 1970.– Apparent transport of water by insect excretory systems.– American Zoologist, 10(3): 413-436. DOI: https://doi.org/10.1093/icb/10.3.413

RAMSAY, J. A., 1976.– The rectal complex in the larvae of Lepidoptera.– Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 274(932): 203-226. DOI: https://doi.org/10.1098/rstb.1976.0043

REYNOLDS, S. E. & BELLWARD, K., 1989.– Water balance in Manduca sexta caterpillars: water recycling from the rectum.– Journal of Experimental Biology, 141(1): 33-45. DOI: https://doi.org/10.1242/jeb.141.1.33

RIGONI, G. M., TOMOTAKE, M. E. M. & CONTE, H., 2004.– Morphology of malpighian tubules of Diatraea saccharalis (F.)(Lepidoptera: Crambidae) at final larval development.– Cytologia, 69(1): 1-6. DOI: https://doi.org/10.1508/cytologia.69.1

ROWLAND, I. J. & GOODMAN, W. G., 2016.– Magnetic Resonance Imaging of Alimentary Tract Development in Manduca sexta.– PloS one, 11(6): e0157124. DOI: https://doi.org/10.1371/journal.pone.0157124

SILVA-DE-MORAES RLM, C.-L. C., 1976.– Comparative studies of Malpighian tubules from larvae, pupae and adults workers of Melipona quadrifasciata anthidioides Lep. (Apidae, Meliponinae).– Papéis Avulsos de Zoologia, 29: 249-257.

TERRA, W. R., 1990.– Evolution of digestive systems of insects.– Annual Review of Entomology, 35(1): 181-200. DOI: https://doi.org/10.1146/annurev.en.35.010190.001145

TERRA, W. R., BARROSO, I. G., DIAS, R. O. & FERREIRA, C., 2019.– Molecular physiology of insect midgut.– In R. JURENKA (ed.). Advances in Insect Physiology, 56: 177-163. DOI: https://doi.org/10.1016/bs.aiip.2019.01.004

TETTAMANTI, G., MALAGOLI, D., MARCHESINI, E., CONGIU, T., EGUILEOR, M. D. & OTTAVIANI, E., 2006.– Oligomycin A induces autophagy in the IPLB-LdFB insect cell line.– Cell & Tissue Research, 326(1): 179-186. DOI: https://doi.org/10.1007/s00441-006-0206-4

THUMMEL, C. S., 2001.– Steroid-triggered death by autophagy.– Bioessays, 23(8): 677-682. DOI: https://doi.org/10.1002/bies.1096

TONG, D. D., WU, Y. L., ZHENG, G. L. & LI, C. Y., 2013.– Research advances on insect midgut cell culture in vitro.– Journal of Environmental Entomology, 35(3): 390-398.

TREHERNE, J. E., 1967.– Gut Absorption.– Annual Review of Entomology, 12(1): 43-58. DOI: https://doi.org/10.1146/annurev.en.12.010167.000355

TSUJIMOTO, Y. & SHIMIZU, S., 2005.– Another way to die: autophagic programmed cell death.– Cell Death & Differentiation, 12(2): 1528-1534. DOI: https://doi.org/10.1038/sj.cdd.4401777

VOLKMANN, A. & PETERS, W., 1989.– Investigations on the midgut caeca of mosquito larvae—II. Functional aspects.– Tissue and Cell, 21(2): 253-261. DOI: https://doi.org/10.1016/0040-8166(89)90070-0

WANG, H. W., ZHANG, C. H., CUI, W. Z., LIU, X. L., ZHOU, Y. C., CAI, Y. M., et al., 2005.– Studies on secretory organs of cocoonase and silkmoth vomiting fluid of silkworm, Bombyx mori.– Science of Sericulture, 31(2): 136-140.

WIGGLESWORTH, V. B., 1972.– The principles of insect physiology: VIII + 827 pp. Chapman and Hall, London/New York. DOI: https://doi.org/10.1007/978-94-009-5973-6

XIONG, Q., LI, J., XUE, J. L., ZHAO, F. & XIE, Y. P., 2011.– Microstructure of Alimentary Canal and Malpighian Tubules of the Larvae of Carposina sasakii (Insecta: Lepidoptera: Carposinidae).– Sichuan Journal of Zoology, 30(5): 753-755+663.

YANG, J. P., 2006.– Improvement of traditional paraffin section preparation methods.– Journal of Biology, 23(1): 45-46.

ZENG, B. J. & FENG, Q. L., 2014.– Study of insect metamorphosis.– Chinese Journal of Applied Entomology, 51(2): 317-328.

ZHANG, Z. W., MEN, L. N., WU, Z. Y., MENG, T. L. & MA, R. Y., 2018.– Studies on fitness of Carposina sasakii Matsumura (Lepidoptera: Carposinidae) to different varieties of Malus pumila Miller apples.– Journal of Shanxi Agricultural University (Natural Science Edition), 38(7): 1-7.

Published

2021-03-30

How to Cite

Xue, O., Feng, D., Men, L., Zhang, Y., Li, J., Den, A., Peng, Y., Ma, R., & Zhang, Z. (2021). Digestive system formation during metamorphosis of Carposina sasakii Matsumura, 1900 (Lepidoptera: Carposinidae). SHILAP Revista De lepidopterología, 49(193), 109–122. https://doi.org/10.57065/shilap.327

Issue

Section

ISSUE