Multigene analysis of Leucoma wiltshirei Collenette, 1938 using combined mitochondrial and nuclear DNA sequences (Lepidoptera: Erebidae)
DOI:
https://doi.org/10.57065/shilap.1085Palavras-chave:
Lepidoptera, Erebidae, Leucoma, genetic identification, mtDNA, nDNA, Oak pest, phylogenetic analysis, taxonomic uncertainties, Zagros forests, IranResumo
The study focuses on molecular identification of Leucoma wiltshirei Collenette, 1938, a significant pest in Iranian oak stands. It employs DNA sequencing of mitochondrial and nuclear gene fragments for accurate identification. The 12S rRNA gene region is highlighted for its suitability in identifying Leucoma Hübner, [1822] species. The analysis revealed genetic characteristics and diversity within the Leucoma wiltshirei gene fragments, contributing valuable information for species identification and understanding their evolutionary relationships.
Downloads
Estatísticas globais ℹ️
2
Visualizações
|
0
Downloads
|
2
Total
|
Referências
Abai, M. (1980). Zur Kenntnis von Leucoma wiltshirei Coll. (Lep., Lymantriidae), eines neuen Schädlings iranischer Eichenwälder: 1. Systematik, Verbreitung und Morphologie. Zeitschrift Fur Angewandte Entomologie, 90(1-5), 511-519 [In Germany]. https://doi.org/10.1111/j.1439-418.1980.tb03559.x DOI: https://doi.org/10.1111/j.1439-0418.1980.tb03559.x
Abai, M. (1981). Zur Kenntnis von Leucoma wiltshirei Coll. (Lep., Lymantriidae), eines neuen Schädlings iranischer Eichenwälder: 2. Biologie, Populationsdynamik und Bekämpfung. Zeitschrift für Angewandte Entomologie, 91(1-5), 86-99. https://doi.org/10.1111/j.1439-418.1981.tb04455.x DOI: https://doi.org/10.1111/j.1439-0418.1981.tb04455.x
Abdi, O. (2019). Climate-triggered insect defoliators and forest fires using multitemporal Landsat and TerraClimate data in NE Iran: An application of GEOBIA TreeNet and panel data analysis. Sensors, 19(18), 3965. https://doi.org/10.3390/s19183965 PMid:31540009 PMCid:PMC6767512 DOI: https://doi.org/10.3390/s19183965
Bertrand, C., Janzen, D. H., Hallwachs, W., Burns, J. M., Gibson, J. F., Shokralla, S., & Hajibabaei, M. (2014). Mitochondrial and nuclear phylogenetic analysis with Sanger and next-generation sequencing shows that, in Área de Conservación Guanacaste, northwestern Costa Rica, the skipper butterfly named Urbanus belli (family Hesperiidae) comprises three morphologically cryptic species. BMC Evololution and Biology, 14, 1-18. https://doi.org/10.1186/1471-2148-14-153 PMid:25005355 PMCid:PMC4112655 DOI: https://doi.org/10.1186/1471-2148-14-153
Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kühnert, D., & De Maio, N. (2019). BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol., 15(4), e1006650. https://doi.org/10.1371/journal.pcbi.1006650 PMid:30958812 PMCid:PMC6472827 DOI: https://doi.org/10.1371/journal.pcbi.1006650
Chen, F., Shi, J., Luo, Y.-q., Sun, S.-y., & Pu, M. (2013). Genetic characterization of the gypsy moth from China (Lepidoptera, Lymantriidae) using inter simple sequence repeats markers. PLoS One, 8(8), e73017. https://doi.org/10.1371/journal.pone.0073017 PMid:23951339 PMCid:PMC3737146 DOI: https://doi.org/10.1371/journal.pone.0073017
Collenette, C. (1938). New Palæarctic and Indo-Australian Lymantriidæ in the British Museum Collection. Annals and Magazine of Natural History, 2(10), 368-387. https://doi.org/10.1080/00222933808526864 DOI: https://doi.org/10.1080/00222933808526864
Cunningham, C. W. (1997). Can three incongruence tests predict when data should be combined? Molecular Biology and Evolution, 14(7), 733-740. https://doi.org/10.1093/oxfordjournals.molbev.a025813 PMid:9214746 DOI: https://doi.org/10.1093/oxfordjournals.molbev.a025813
Dai, Q.-Y., Gao, Q., Wu, C.-S., Chesters, D., Zhu, C.-D., & Zhang, A.-B. (2012). Phylogenetic reconstruction and DNA barcoding for closely related pine moth species (Dendrolimus) in China with multiple gene markers. PLoS One, 7(4), e32544. https://doi.org/10.1371/journal.pone.0032544 PMid:22509245 PMCid:PMC3317921 DOI: https://doi.org/10.1371/journal.pone.0032544
Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull., 19, 11-15.
Elameen, A., Maduna, S. N., Mageroy, M. H., van Eerde, A., Knudsen, G., Hagen, S. B., & Eiken, H. G. (2024). Novel insight into lepidopteran phylogenetics from the mitochondrial genome of the apple fruit moth of the family Argyresthiidae. BMC Genomics, 25(1), 21. https://doi.org/10.1186/s12864-023-09905-1 PMid:38166583 PMCid:PMC10759517 DOI: https://doi.org/10.1186/s12864-023-09905-1
Evans, H. (1987). Insects and Trees: Present Knowledge and Future Prospects. Advances in Practical Arboriculture, 65, 137.
Ferrenberg, S. (2016). Landscape features and processes influencing forest pest dynamics. Current Landscape Ecology Reports, 1, 19-29. https://doi.org/10.1007/s40823-016-0005-x DOI: https://doi.org/10.1007/s40823-016-0005-x
Gouy, M., Guindon, S., & Gascuel, O. (2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27(2), 221-224. https://doi.org/https://doi.org/10.1093/molbev/msp259 PMid:19854763 DOI: https://doi.org/10.1093/molbev/msp259
Haack, R. A., & Byler, J. W. (1993). Insects and pathogens: regulators of forest ecosystems. Journal of Forestry, 91(9), 32-37. https://doi.org/10.1093/jof/91.9.32 DOI: https://doi.org/10.1093/jof/91.9.32
Hebert, P. D. N., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceeding of the Royal Society, B, 270, 313-321. https://doi.org/https://doi.org/10.1098/rspb.2002.2218 PMid:12614582 PMCid:PMC1691236 DOI: https://doi.org/10.1098/rspb.2002.2218
Hedin, M. C., & Maddison, W. P. (2001). A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution, 18(3), 386-403. https://doi.org/10.1006/mpev.2000.0883 PMid:11277632 DOI: https://doi.org/10.1006/mpev.2000.0883
Hosseini-Chegeni, A., & Tavakoli, M. (2023). Molecular identification of some immature Lepidoptera causing Quercus L., defoliation in Lorestan province, western Iran (Insecta: Lepidoptera). SHILAP Revista de lepidopterología, 51(204), 641-652. https://doi.org/10.57065/shilap.787 DOI: https://doi.org/10.57065/shilap.787
Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8), 754-755. https://doi.org/10.1093/bioinformatics/17.8.754 PMid:11524383 DOI: https://doi.org/10.1093/bioinformatics/17.8.754
Hundsdoerfer, A. K., Rubinoff, D., Attié, M., Wink, M., & Kitching, I. J. (2009). A revised molecular phylogeny of the globally distributed hawkmoth genus Hyles (Lepidoptera: Sphingidae), based on mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution, 52(3), 852-865. https://doi.org/10.1016/j.ympev.2009.05.023 PMid:19482093 DOI: https://doi.org/10.1016/j.ympev.2009.05.023
Karthika, P., Krishnaveni, N., Vadivalagan, C., Murugan, K., Nicoletti, M., & Benelli, G. (2016). DNA barcoding and evolutionary lineage of 15 insect pests of horticultural crops in South India. Karbala International Journal of Modern Science, 2(3), 156-168. https://doi.org/10.1016/j.kijoms.2016.03.006 DOI: https://doi.org/10.1016/j.kijoms.2016.03.006
Kononov, A., Ustyantsev, K., Wang, B., Mastro, V.C., Fet, V., Blinov, A., & Baranchikov, Y. (2016). Genetic diversity among eight Dendrolimus species in Eurasia (Lepidoptera: Lasiocampidae) inferred from mitochondrial COI and COII, and nuclear ITS2 markers. BMC Genetics, 17, 173-182. https://doi.org/10.1186/s12863-016-0463-5 PMid:28105930 PMCid:PMC5249024 DOI: https://doi.org/10.1186/s12863-016-0463-5
Kulman, H. (1971). Effects of insect defoliation on growth and mortality of trees. Annual Review of Entomology, 16(1), 289-324. https://doi.org/10.1146/annurev.en.16.010171.001445 DOI: https://doi.org/10.1146/annurev.en.16.010171.001445
Ma, L., Liu, F., Chiba, H., & Yuan, X. (2020). The mitochondrial genomes of three skippers: Insights into the evolution of the family Hesperiidae (Lepidoptera). Genomics, 112(1), 432-441. https://doi.org/10.1016/j.ygeno.2019.03.006 PMid:30898470 DOI: https://doi.org/10.1016/j.ygeno.2019.03.006
Nealis, V. (1991). Natural enemies and forest pest management. The Forestry Chronicle, 67(5), 500-505. https://doi.org/10.5558/tfc67500-5 DOI: https://doi.org/10.5558/tfc67500-5
Nicholas, K. B., Nicholas, H. B. J., & Deerfield, D. W. (1997). GeneDoc: analysis and visualization of genetic variation. Embnew News, 4(1), 14.
Pazhenkova, E. A., & Lukhtanov, V. A. (2019). Nuclear genes (but not mitochondrial DNA barcodes) reveal real species: Evidence from the Brenthis fritillary butterflies (Lepidoptera, Nymphalidae). Journal of Zoological Systematics and Evolutionary Research, 57(2), 298-313. https://doi.org/10.1111/jzs.12252 DOI: https://doi.org/10.1111/jzs.12252
Sadeghi, S. E., Yarmand, H., Zamani, S. M., Ali, B., Zeinaly, S., Mehrabi, A., Talebi, A. A., & Azizkhani, E. (2009). Insects associated with forest communities and poplar plantations in Iran. In A. R. Kharazipour, C. Schöpper, C. Müller, M. Euring (Eds.). Review of forests, wood products and wood biotechnology of Iran and Germany - Part III (pp. 265-283). Göttingen University Presstingen Germany.
Sagheb-Talebi, K., Pourhashemi, M., & Sajedi, T. (2014). Forests of Iran: a treasure from the past, a hope for the future. Springer. DOI: https://doi.org/10.1007/978-94-007-7371-4
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomologicalo Society of America, 87(6), 651-701. https://doi.org/https://doi.org/10.1093/aesa/87.6.651 DOI: https://doi.org/10.1093/aesa/87.6.651
Swofford, D. L. (2002). PAUP: phylogenetic analysis using parsimony (and other methods) (Version Version 4.0 Beta). Sinauer Associates Inc.
Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evololution, 38(7), 3022-3027. DOI: https://doi.org/10.1093/molbev/msab120
van Nieukerken, E. J., Kaila, L., Kitching, I. J., Kristensen, N. P., Lees, D. C., Minet, J., Mitter, C., Mutanen, M., Regier, J. C., Simonsen, T. J., Wahlberg, N., Yen, S.-H., Zahiri, R., Adamski, D., Baixeras, J., Bartsch, D., Bengtsson, B. A., Brown, J. W., Bucheli, S. R., & Andreas, Z. (2011). Order Lepidoptera Linnaeus, 1758. In Z.-Q. Zhang (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148, 212-221. https://doi.org/10.11646/zootaxa.3148.1.41 DOI: https://doi.org/10.11646/zootaxa.3148.1.41
Vodolazhsky, D., & Stradomsky, B. (2010). Analysis of mitochondrial and nuclear DNA sequences in some butterflies of genus Plebejus Kluk, 1780 (Lepidoptera: Lycaenidae) of Russian South. Caucasian Entomological Bulletin, 6(2), 191-192 [In Russian]. https://doi.org/10.23885/1814-3326-2010-6-2-191-192 DOI: https://doi.org/10.23885/1814-3326-2010-6-2-191-192
Vodolazhsky, D. I., Stradomsky, B. V., & Pljushtch, I. G. (2011). Analysis of mitochondrial and nuclear DNA sequences in some butterflies of subgenus Polyommatus (s. str) Latreille, 1804 (Lepidoptera: Lycaenidae) of Afghanistan. Caucasian Entomological Bulletin, 7(2), 217-218 [In Russian]. https://doi.org/10.23885/1814-3326-2011-7-2-217-218 DOI: https://doi.org/10.23885/1814-3326-2011-7-2-217-218
Wahlberg, N., Weingartner, E., Warren, A. D., & Nylin, S. (2009). Timing major conflict between mitochondrial and nuclear genes in species relationships of Polygonia butterflies (Nymphalidae: Nymphalini). BMC Evolution and Biology, 9, 1-16. https://doi.org/10.1186/1471-2148-9-92 PMid:19422691 PMCid:PMC2688511 DOI: https://doi.org/10.1186/1471-2148-9-92
Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M., & Barton, G. J. (2009). Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics, 25(9), 1189-1191. https://doi.org/10.1093/bioinformatics/btp033 PMid:19151095 PMCid:PMC2672624 DOI: https://doi.org/10.1093/bioinformatics/btp033
Wiemers, M., Stradomsky, B. V., & Vodolazhsky, D. I. (2010). A molecular phylogeny of Polyommatus s. str. and Plebicula based on mitochondrial COI and nuclear ITS2 sequences (Lepidoptera: Lycaenidae). European Journal of Entomology, 107(3), 325. https://doi.org/10.14411/eje.2010.041 DOI: https://doi.org/10.14411/eje.2010.041
Zahiri, R., Holloway, J. D., Kitching, I. J., Lafontaine, J. D., Mutanen, M., & Wahlberg, N. (2012). Molecular phylogenetics of Erebidae (Lepidoptera, noctuoidea). Systematic Entomology, 37(1), 102-124. https://doi.org/10.1111/j.1365-3113.2011.00607.x DOI: https://doi.org/10.1111/j.1365-3113.2011.00607.x
Zahiri, R., Holloway, J. D., Rota, J., Schmidt, B. C., Pellinen, M. J., Kitching, I. J., Miller, S. E., & Wahlberg, N. (2023). Evolutionary history of Euteliidae (Lepidoptera, Noctuoidea). Systematic Entomology, 48(3), 445-462. https://doi.org/10.1111/syen.12587 DOI: https://doi.org/10.1111/syen.12587
Zhao, J., Wu, Y., Kurenshchikov, D. K., Ilyinykh, A. V., & Shi, J. (2019). Underestimated mitochondrial diversity in gypsy moth Lymantria dispar from Asia. Agricultural and Forest Entomology, 21(2), 235-242. https://doi.org/10.111/afe.12325 DOI: https://doi.org/10.1111/afe.12325
Downloads
Publicado
Como Citar
Edição
Secção
Licença

Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição 4.0.
O autor mantém os seus direitos de marca registada e de patente para qualquer processo ou procedimento dentro do artigo.
O autor mantém o direito de partilhar, distribuir, executar e comunicar publicamente o artigo publicado no SHILAP Revista de lepidopterología, com reconhecimento inicial da sua publicação no SHILAP Revista de lepidopterología.
O autor reserva-se o direito de fazer uma publicação posterior da sua obra, desde a utilização do artigo até à sua publicação num livro, desde que indique a sua publicação inicial no SHILAP Revista de lepidopterología.
Cada apresentação ao SHILAP Revista de lepidopterología deve ser acompanhada por uma aceitação dos direitos de autor e reconhecimento da autoria. Ao aceitá-los, os autores retêm os direitos autorais da sua obra e concordam que o artigo, se aceite para publicação pelo SHILAP Revista de lepidopterología, será licenciado para uso e distribuição sob uma licença "Creative Commons Attribution 4.0 International" (CC BY 4.0), que permite a terceiros partilhar e adaptar o conteúdo para qualquer fim, dando o devido crédito à obra original.
Pode consultar aqui a versão informativa e o texto legal da licença. A indicação da licença CC BY 4.0 deve ser expressamente indicada desta forma quando necessário.
A partir de 2022, o conteúdo da versão impressa e digital é licenciado sob uma licença de utilização e distribuição "Creative Commons Attribution 4.0 International" (CC BY 4.0), que permite a terceiros partilhar e adaptar o conteúdo para qualquer fim, dando o devido crédito à obra original.
O conteúdo anterior da revista foi publicado sob uma licença tradicional de direitos de autor; no entanto, o arquivo está disponível para acesso livre.
Ao utilizar o conteúdo do SHILAP Revista de lepidopterología publicado antes do ano 2022, incluindo figuras, tabelas ou qualquer outro material em formato impresso ou eletrónico pertencem aos autores dos artigos, os autores devem obter a autorização do detentor dos direitos de autor. As responsabilidades legais, financeiras e criminais a este respeito pertencem ao(s) autor(es).
Em aplicação do Princípio de Prioridade do Código Internacional de Nomenclatura Zoológica, nenhuma outra versão além da publicada pela editora pode ser depositada em repositórios, websites pessoais ou similares.