Expecting the unexpected: Random tissue barcoding reveals the presence of Pieridae in the diet of ground-dwelling Tenebrionidae (Insecta: Lepidoptera, Coleoptera)
DOI:
https://doi.org/10.57065/shilap.1074Schlagworte:
Insecta, Lepidoptera, Coleoptera, COI, Tenbrionidae, Oxycara, Pieridae, Pontia, Cabo VerdeAbstract
The genus of Tenebrionidae (Coleoptera) Oxycara Solier, 1835 includes 16 species endemic to the Cabo Verde Archipelago. In this study we analysed part of the diet of O. richardi Alluaud, 1936, endemic to the island of Sal, through the non-targeted amplification of a fragment of the mitochondrial gene cytochrome c oxidase subunit I (COI) from a specimen of this species. The results revealed that these detritivorous Coleoptera opportunistically feed on Pontia glauconome (Klug, 1829), a species of Pieridae also present in the archipelago. This finding provides new data on the trophic interactions and feeding behaviour of O. richardi.
Downloads
Globale Statistiken ℹ️
2
Aufrufe
|
0
Downloads
|
2
Gesamt
|
Literaturhinweise
Ashfaq, M., Akhtar, S., Khan, A. M., Adamowicz, S. J., & Hebert, P. D. (2013). DNA barcode analysis of butterfly species from Pakistan points towards regional endemism. Molecular Ecology Resources, 13(5), 832-843. https://doi.org/10.1111/1755-0998.12131 DOI: https://doi.org/10.1111/1755-0998.12131
Báez, M., & García, A. (2005). Lepidoptera. In M. Arechavaleta, N. Zurita, M. C. Marrero & J. L. Martín (Eds). Lista Preliminar de Especies Silvestres de Cabo Verde (Hongos, Plantas y Animales Terrestres) (pp. 87-90). Consejería de Medio Ambiente y Ordenació n Territorial, Gobierno de Canarias.
Bennett, V. J., Hale, A. M., & Williams, D. A. (2017). When the excrement hits the fan: Fecal surveys reveal species-specific bat activity at wind turbines. Mammalian Biology, 87, 125-129. https://doi.org/10.1016/j.mambio.2017.08.003 DOI: https://doi.org/10.1016/j.mambio.2017.08.003
Camacho, C., Boratyn, G. M., Joukov, V., Vera Alvarez, R., & Madden, T. L. (2023). ElasticBLAST: accelerating sequence search via cloud computing. BMC bioinformatics, 24(1), 117. https://doi.org/10.1186/s12859-023-05245-9 DOI: https://doi.org/10.1186/s12859-023-05245-9
Chew, F. S., & Watt, W. B. (2006). The green-veined white (Pieris napi L.), its Pierine relatives, and the systematics dilemmas of divergent character sets (Lepidoptera, Pieridae). Biological Journal of the Linnean Society, 88(3), 413-435. https://doi.org/10.1111/j.1095-312.2006.00630.x DOI: https://doi.org/10.1111/j.1095-8312.2006.00630.x
Chu, C., Loh, K. H., Ng, C. C., Ooi, A. L., Konishi, Y., Huang, S. P., & Chong, V. C. (2019). Using DNA barcodes to aid the identification of larval fishes in tropical estuarine waters (Malacca Straits, Malaysia). Zoological studies, 58, e30.
Dalén, L., Lagerholm, V. K., Nylander, J. A., Barton, N., Bochenski, Z. M., Tomek, T., Rudling, D., Ericson, P. G. P., Irestedt, M. & Stewart, J. R. (2017). Identifying bird remains using ancient DNA barcoding. Genes, 8(6), 169. https://doi.org/10.3390/genes8060169. DOI: https://doi.org/10.3390/genes8060169
Dincă, V., Dapporto, L., Somervuo, P., Vodă, R., Cuvelier, S., Gascoigne-Pees, M., Huemer, P., Mutanen, M., Hebert, P. D. & Vila, R. (2021). High resolution DNA barcode library for European butterflies reveals continental patterns of mitochondrial genetic diversity. Communications Biology, 4(1), 315. https://doi.org/10.1038/s42003-021-01834-7 DOI: https://doi.org/10.1038/s42003-021-01834-7
Dufour, P. C., Willmott, K. R., Padrón, P. S., Xing, S., Bonebrake, T. C., & Scheffers, B. R. (2018). Divergent melanism strategies in Andean butterfly communities structure diversity patterns and climate responses. Journal of Biogeography, 45(11), 2471-2482. https://doi.org/10.1111/jbi.13433 DOI: https://doi.org/10.1111/jbi.13433
Duncan, F. D., Krasnov, B., & McMaster, M. (2002). Metabolic rate and respiratory gas-exchange patterns in tenebrionid beetles from the Negev Highlands, Israel. Journal of Experimental Biology, 205(6), 791-798. https://doi.org/10.1242/jeb.205.6.791 DOI: https://doi.org/10.1242/jeb.205.6.791
Fattorini, S. (2023). Adaptations of tenebrionid beetles to Mediterranean sand dune environments and the impact of climate change (Coleoptera: Tenebrionidae). Fragmenta entomologica, 55(1), 1-20. https://doi.org/10.4081/fe.2015.129 DOI: https://doi.org/10.4081/fe.2015.129
Ferri, G., Alu, M., Corradini, B., Licata, M., & Beduschi, G. (2009). Species identification through DNA “barcodes”. Genetic testing and molecular biomarkers, 13(3), 421-426. https://doi.org/10.1089/gtmb.2008.0144 DOI: https://doi.org/10.1089/gtmb.2008.0144
Folmer O, Black M, Hoeh W, Lutz R, & Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294-299.
Francis, C. M., Borisenko, A. V., Ivanova, N. V., Eger, J. L., Lim, B. K., Guillén-Servent, A., Kruskop, S. V., Mackie, I. & Hebert, P. D. (2010). The role of DNA barcodes in understanding and conservation of mammal diversity in Southeast Asia. PloS one, 5(9), e12575. https://doi.org/10.1371/journal.pone.0012575 DOI: https://doi.org/10.1371/journal.pone.0012575
Gil, V., Pinho, C. J., Aguiar, C. A., Jardim, C., Rebelo, R., & Vasconcelos, R. (2020). Questioning the proverb ‘more haste, less speed’: Classic versus metabarcoding approaches for the diet study of a remote island endemic gecko. PeerJ, 8, e8084. https://doi.org/10.7717/peerj.8084 DOI: https://doi.org/10.7717/peerj.8084
Harms-Tuohy, C. A., Schizas, N. V., & Appeldoorn, R. S. (2016). Use of DNA metabarcoding for stomach content analysis in the invasive lionfish Pterois volitans in Puerto Rico. Marine Ecology Progress Series, 558, 181-191. https://doi.org/10.3354/meps11738 DOI: https://doi.org/10.3354/meps11738
Hebert, P. D., Cywinska, A., Ball, S. L., & DeWaard, J. R. (2003a). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1512), 313-321. https://doi.org/10.1098/rspb.2002.2218. DOI: https://doi.org/10.1098/rspb.2002.2218
Hebert, P. D., Penton, E. H., Burns, J. M., Janzen, D. H., & Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences, 101(41), 14812-14817. https://doi.org/10.1073/pnas.0406166101 DOI: https://doi.org/10.1073/pnas.0406166101
Hebert, P. D., Ratnasingham, S., & De Waard, J. R. (2003b). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(suppl. 1), S96-S99. https://doi.org/10.1098/rsbl.2003.0025 DOI: https://doi.org/10.1098/rsbl.2003.0025
Jurado-Angulo, P., García-París, M., Ruiz, J. L., & Rosas-Ramos, N. (2023). Phylogeographic and phylogenetic notes on Iberian Ripiphoridae (Coleoptera). Annales Zoologici, 73(4), 763-776. https://doi.org/10.3161/00034541ANZ2023.73.4.014 DOI: https://doi.org/10.3161/00034541ANZ2023.73.4.014
Kingsolver, J. G. (1999). Experimental analyses of wing size, flight, and survival in the western white butterfly. Evolution, 53(5), 1479-1490. https://doi.org/10.2307/2640894 DOI: https://doi.org/10.1111/j.1558-5646.1999.tb05412.x
Lara, A., Ponce de León, J. L., Rodríguez, R., Casane, D., Cote, G., Bernatchez, L., & García-Machado, E. R. I. K. (2010). DNA barcoding of Cuban freshwater fishes: evidence for cryptic species and taxonomic conflicts. Molecular ecology resources, 10(3), 421-430. https://doi.org/10.1111/j.1755-0998.2009.02785.x DOI: https://doi.org/10.1111/j.1755-0998.2009.02785.x
Leese, F., Sander, M., Buchner, D., Elbrecht, V., Haase, P., & Zizka, V. M. (2021). Improved freshwater macroinvertebrate detection from eDNA through minimized non-target amplification. Environmental DNA, 3, 261-276. https://doi.org/10.1002/edn3.177 DOI: https://doi.org/10.1002/edn3.177
Lynggaard, C., Oceguera-Figueroa, A., Kvist, S., Gilbert, M. T. P., & Bohmann, K. (2021). The potential of aquatic haematophagous, liquidosomatophagous and macrophagous leeches as a tool for iDNA characterisation. Molecular Ecology, 22(2), 539-553. https://doi.org/10.1111/1755-0998.13486 DOI: https://doi.org/10.1111/1755-0998.13486
Macías-Hernández, N., Athey, K., Tonzo, V., Wangensteen, O. S., Arnedo, M., & Harwood, J. D. (2018). Molecular gut content analysis of different spider body parts. PloS one, 13(5), e0196589. https://doi.org/10.1371/journal.pone.0196589 DOI: https://doi.org/10.1371/journal.pone.0196589
Mas-Peinado, P., Buckley, D., García-París, M., Valdeón, A., Al-Hemaidi, A. A. M., & Castilla, A. M. (2015). Recent mtDNA haplotype diversification in Adesmia cancellata (Coleoptera, Tenebrionidae) across the peninsular desert of Qatar. Zoologischer Anzeiger-a Journal of Comparative Zoology, 259, 1-12. https://doi.org/10.1016/j.jcz.2015.09.002 DOI: https://doi.org/10.1016/j.jcz.2015.09.002
Mas-Peinado, P., Buckley, D., Ruiz, J. L., & García-París, D. (2021). Recurrent diversification patterns and taxonomic complexity in morphologically conservative ancient lineages of Pimelia (Coleoptera: Tenebrionidae). Systematic Entomology, 43(3), 522-548. https://doi.org/10.1111/syen.12291 DOI: https://doi.org/10.1111/syen.12291
Mas-Peinado, P., García-París, M., Ruiz, J. L., & Buckley, D. (2022). The Strait of Gibraltar is an ineffective palaeogeographic barrier for some flightless darkling beetles (Coleoptera: Tenebrionidae: Pimelia). Zoological Journal of the Linnean Society, 195(4), 1147-1180. https://doi.org/10.1093/zoolinnean/zlab088 DOI: https://doi.org/10.1093/zoolinnean/zlab088
Matthews, E. G., Lawrence, J. F., Bouchard, P., Steiner, W. E., Ślipiński, S. A., Leschen, R. A. B., & Beutel, R. G. (2010). Chapter 11.14. Tenebrionidae Latreille, 1802. In Leschen, R. A. B., Beutel, R. G., & Lawrence, J. F. (eds.) Handbook of Zoology. A natural history of the Phyla of the animal kingdom, Vol. IV - Arthropoda: Insecta. Part 38. Coleoptera, Beetles, Vol. 2: Systematics (Part 2), 574-659. Walter de Gruyter.
Miller, S. E., Hausmann, A., Hallwachs, W., & Janzen, D. H. (2016). Advancing taxonomy and bioinventories with DNA barcodes. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1702), 20150339. https://doi.org/10.1098/rstb.2015.0339 DOI: https://doi.org/10.1098/rstb.2015.0339
Mioduchowska, M., Czyż, M. J., Gołdyn, B., Kur, J., & Sell, J. (2018). Instances of erroneous DNA barcoding of metazoan invertebrates: Are universal cox1 gene primers too “universal”? PLoS One, 13(6), e0199609. https://doi.org/10.1371/journal.pone.0199609 DOI: https://doi.org/10.1371/journal.pone.0199609
Nichols, R. V., Cromsigt, J. P., & Spong, G. (2015). Using eDNA to experimentally test ungulate browsing preferences. SpringerPlus, 4, 1-5. https://doi.org/10.1186/s40064-015-1285-z DOI: https://doi.org/10.1186/s40064-015-1285-z
Nie, L., Wang, Y., Huang, D., Tao, R., Su, C., Hao, J., & Zhu, C. (2018). Mitochondrial genomes of four pierid butterfly species (Lepidoptera: Pieridae) with assessments about Pieridae phylogeny upon multiple mitogenomic datasets. Zoological Systematics, 43(4), 387-409.
Pereira, A., Xavier, R., Perera, A., Salvi, D., & Harris, D. J. (2019). DNA metabarcoding to assess diet partitioning and feeding strategies in generalist vertebrate predators: a case study on three syntopic lacertid lizards from Morocco. Biological Journal of the Linnean Society, 127(4), 800-809. https://doi.org/10.1093/biolinnean/blz061 DOI: https://doi.org/10.1093/biolinnean/blz061
Pilgrim, J., Thongprem, P., Davison, H. R., Siozios, S., Baylis, M., Zakharov, E. V., Ratnasingham, S., deWaard, J. R., Macadam, C. R., Smith, A., & Hurst, G. D. (2021). Torix Rickettsia are widespread in arthropods and reflect a neglected symbiosis. GigaScience, 10(3), giab021. https://doi.org/10.1093/gigascience/giab021 DOI: https://doi.org/10.1093/gigascience/giab021
Pinho, C. J., Darwish, M., Šmíd, J., Carranza, S., & Vasconcelos, R. (2023). Green matters: Dietary assessment of a reptile community using DNA metabarcoding. Global Ecology and Conservation, 47, e02667. https://doi.org/10.1016/j.gecco.2023.e02667 DOI: https://doi.org/10.1016/j.gecco.2023.e02667
Pinho, C. J., Jowers, M. J., Caut, S., & Vasconcelos, R. (2024). Caught in the web: spider diets as a window into arthropod diversity in remote áreas. Zoologia Caboverdiana, 12(1), 6-9.
Pinho, C. J., Lopes, E. P., Paupério, J., Gomes, I., Romeiras, M. M., & Vasconcelos, R. (2022). Trust your guts? The effect of gut section on diet composition and impact of Mus musculus on islands using metabarcoding. Ecology and Evolution, 12(3), e8638. https://doi.org/10.1002/ece3.8638 DOI: https://doi.org/10.1002/ece3.8638
Pompanon, F., Deagle, B. E., Symondson, W. O., Brown, D. S., Jarman, S. N., & Taberlet, P. (2012). Who is eating what: diet assessment using next generation sequencing. Molecular ecology, 21(8), 1931-1950. https://doi.org/10.1111/j.1365-294X.2011.05403.x DOI: https://doi.org/10.1111/j.1365-294X.2011.05403.x
Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Tracer v.1.7.
Ronquist, F., Teslenko, M., Van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539-542. https://doi.org/10.1093/sysbio/sys029 DOI: https://doi.org/10.1093/sysbio/sys029
Sánchez-Vialas, A., García-París, M., Ruiz, J. L., & Recuero, E. (2020). Patterns of morphological diversification in giant Berberomeloe blister beetles (Coleoptera: Meloidae) reveal an unexpected taxonomic diversity concordant with mtDNA phylogenetic structure. Zoological Journal of the Linnean Society, 189(4), 1249-1312. https://doi.org/10.1093/zoolinnean/zlz164 DOI: https://doi.org/10.1093/zoolinnean/zlz164
Santos, B., Pinho, C. J., Št’áhlavský, F., Mata, V. A., Lopes, R. J., & Vasconcelos, R. (2022). Diet study of geckos reveals the first records of pseudoscorpions on Desertas Islands (Cabo Verde). The Journal of Arachnology, 50(1), 39-42. https://doi.org/10.1636/JoA-S-20-085 DOI: https://doi.org/10.1636/JoA-S-20-085
Sanz-laParra, A. M., García-París, M., & López-Estrada, E. K. (2023). Different perspectives on the phylogeny of Mordellidae (Coleoptera) provided by two regions of the mtDNA COI gene. Annales Zoologici, 73(2), 293-312. https://doi.org/10.3161/00034541ANZ2023.73.2.010 DOI: https://doi.org/10.3161/00034541ANZ2023.73.2.010
Sayers, E. W., O’Sullivan, C., & Karsch-Mizrachi, I. (2022). Using GenBank and SRA. Methods in Molecular Biology, 2443, 1-25. https://doi.org/10.1007/978-1-0716-2067-0_1 DOI: https://doi.org/10.1007/978-1-0716-2067-0_1
Shashank, P. R., Naveena, N. L., Rajgopal, N. N., Elliott, T. A., Sreedevi, K., Sunil, S., & Meshram, N. M. (2022). DNA barcoding of insects from India: Current status and future perspectives. Molecular Biology Reports, 49(11), 10617-10626. https://doi.org/10.1007/s11033-022-07628-2 DOI: https://doi.org/10.1007/s11033-022-07628-2
Sidhu, A. K., & Kaur, M. (2014). Life History of the Type-Species Pontia daplidice (Linnaeus), the Bath white (Lepidoptera: Pieridae). Biological Forum, 6(1), 128-131.
Smith, A. M., Bertrand, C., Crosby, K., Eveleigh, E. S., Fernandez-Triana, J., Fisher, B. L., Gibbs, J., Hajibabaei, M., Hallwachs, W., Hind, K., Hrcek, J., Huang, D., Janda, M., Janzen, D. H., Li, Y., Miller, S. E., Packer, L., Quicke, D., Ratnasingham, S., Rodriguez, J., Rougerie, R., Shaw, M. R., Sheffield, C., Stahlhut, J. K., Steinke, D., Whitfield, J., Wood, M. & Zhou, X. (2012). Wolbachia and DNA barcoding insects: Patterns, potential, and problems. PLoS One, 7(5), e36514. https://doi.org/10.1371/journal.pone.0036514 DOI: https://doi.org/10.1371/journal.pone.0036514
Speller, C., van den Hurk, Y., Charpentier, A., Rodrigues, A., Gardeisen, A., Wilkens, B., McGrath, K., Rowsell, K., Spindler, L., Collins, M. & Hofreiter, M. (2016). Barcoding the largest animals on Earth: ongoing challenges and molecular solutions in the taxonomic identification of ancient cetaceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1702), 20150332. https://doi.org/10.1098/rstb.2015.0332 DOI: https://doi.org/10.1098/rstb.2015.0332
Tennent, W. J., & Russell, P. J. (2015). Butterflies of the Cape Verde Islands (Insecta, Lepidoptera). Zoologia Caboverdiana, 5(2), 64-104.
Tennent, W. J., & Russell, P. J. (2019). Additional notes on butterflies of the Cape Verde Islands. Metamorphosis, 30, 3-13. https://doi.org/10.4314/met.v30i1.2 DOI: https://doi.org/10.4314/met.v30i1.2
Vargas, S., Schuster, A., Sacher, K., Büttner, G., Schätzle, S., Läuchli, B., Hall, K., Hooper, J. N. A., Erpenbeck, D., & Wörheide, G. (2012). Barcoding sponges: an overview based on comprehensive sampling. PloS one, 7(7), e39345. https://doi.org/10.1371/journal.pone.0039345 DOI: https://doi.org/10.1371/journal.pone.0039345
Vasconcelos, R., Montero-Mendieta, S., Simo-Riudalbas, M., Sindaco, R., Santos, X., Fasola, M., Llorente, G., Razzetti, E., & Carranza, S. (2016). Unexpectedly high levels of cryptic diversity uncovered by a complete DNA barcoding of reptiles of the Socotra Archipelago. PLoS One, 11(3), e0149985. https://doi.org/10.1371/journal.pone.0149985 DOI: https://doi.org/10.1371/journal.pone.0149985
Vieira, V. (2008). Lepidopteran fauna from the Sal Island, Cape Verde (Insecta: Lepidoptera). SHILAP Revista de lepidopterología, 36(142), 243-252.
Wahlberg, N., Rota, J., Braby, M. F., Pierce, N. E., & Wheat, C. W. (2014). Revised systematics and higher classification of pierid butterflies (Lepidoptera: Pieridae) based on molecular data. Zoologica Scripta, 43(6), 641-650. https://doi.org/10.1111/zsc.12075 DOI: https://doi.org/10.1111/zsc.12075
Watt, J. C. (1974). A revised subfamily classification of Tenebrionidae (Coleoptera). New Zealand journal of zoology, 1(4), 381-452. https://doi.org/10.1080/03014223.1974.9517846 DOI: https://doi.org/10.1080/03014223.1974.9517846
Webb, K. E., Barnes, D. K., Clark, M. S., & Bowden, D. A. (2006). DNA barcoding: a molecular tool to identify Antarctic marine larvae. Deep Sea Research Part II: Topical Studies in Oceanography, 53, 1053-1060. https://doi.org/10.1016/j.dsr2.2006.02.013 DOI: https://doi.org/10.1016/j.dsr2.2006.02.013
Yeo, D., Puniamoorthy, J., Ngiam, R. W. J., & Meier, R. (2018). Towards holomorphology in entomology: rapid and cost-effective adult-larva matching using NGS barcodes. Systematic entomology, 43(4), 678-691. https://doi.org/10.1111/syen.12296 DOI: https://doi.org/10.1111/syen.12296
Downloads
Veröffentlicht
Zitationsvorschlag
Ausgabe
Rubrik
Lizenz
Copyright (c) 2025 Pilar Jurado-Angulo, Raquel Vasconcelos, Mario García-París

Dieses Werk steht unter der Lizenz Creative Commons Namensnennung 4.0 International.
Der Autor behält sich seine Marken- und Patentrechte an allen in diesem Artikel enthaltenen Verfahren und Prozessen vor.
Der Autor behält sich das Recht vor, den im SHILAP Revista de lepidopterología veröffentlichten Artikel zu teilen, zu verbreiten, aufzuführen und öffentlich zu kommunizieren, mit der anfänglicher Anerkennung der Veröffentlichung im SHILAP Revista de lepidopterología.
Der Autor behält sich das Recht auf eine spätere Veröffentlichung seiner Arbeit vor, von der Verwendung des Artikels bis hin zur Veröffentlichung in einem Buch, vorausgesetzt, er weist auf die Erstveröffentlichung im SHILAP Revista de lepidopterología hin.
Jeder Einreichung für das SHILAP Revista de lepidopterología muss eine Anerkennung des Urheberrechts und eine Bestätigung der Autorenschaft beigefügt sein. Mit ihrer Annahme behalten die Autoren das Urheberrecht an ihrer Arbeit und erklären sich damit einverstanden, dass der Artikel, wenn er von SHILAP Revista de lepidopterología zur Veröffentlichung angenommen wird, für die Nutzung und Verbreitung unter einer "Creative Commons Attribution 4.0 International" (CC BY 4.0)-Lizenz lizenziert wird, die es Dritten erlaubt, den Inhalt für jeden Zweck zu teilen und zu bearbeiten, wobei das Originalwerk angemessen zu erwähnen ist.
Eine informative Version und den Rechtstext der Lizenz finden Sie hier. Der Hinweis auf die CC BY 4.0-Lizenz muss erforderlichenfalls ausdrücklich auf diese Weise erfolgen.
Ab 2022 ist der Inhalt der gedruckten und digitalen Version unter einer "Creative Commons Attibution 4.0 International" (CC BY 4.0) -Lizenz lizenziert wird, die es Dritten erlaubt, den Inhalt für jeden Zweck zu teilen und zu bearbeiten, wobei das Originalwerk angemessen zu erwähnen ist.
Frühere Inhalte der Zeitschrift wurden unter einer herkömmlichen Urheberrechtslizenz veröffentlicht; das Archiv ist jedoch frei zugänglich.
Ao utilizar o conteúdo do SHILAP Revista de lepidopterología publicado antes do ano 2022, incluindo figuras, tabelas ou qualquer outro material em formato impresso ou eletrónico pertencem aos autores dos artigos, os autores devem obter a autorização do detentor dos direitos de autor. As responsabilidades legais, financeiras e criminais a este respeito pertencem ao(s) autor(es).
In Anwendung des Prioritätsprinzips des Internationalen Kodex der Zoologischen Nomenklatur darf keine andere als die vom Herausgeber veröffentlichte Version in Repositorien, persönlichen Websites oder ähnlichem hinterlegt werden.