Estimation of the potential habitat for Satyrium w-album (Knoch, 1782) in the Iberian Peninsula and prediction of the climate change effects on its distribution for the years 2050 and 2070 (Lepidoptera: Lycaenidae)

Authors

DOI:

https://doi.org/10.57065/shilap.729

Keywords:

Lepidoptera, Lycaenidae, Satyrium w-album, distribution model, MaxEnt, climate change, Iberian Peninsula

Abstract

In this paper we try to increase the knowledge of possible distribution of Satyrium w-album in the Iberian Peninsula using the predictive model MaxEnt, estimated the potential of habitat for this species under current bioclimatic conditions, in addition to estimate the future potential of habitat under the climate change effects for the years 2050 and 2070 used two scenarios of possible emission (RCP 4.5 and RCP 8.5). The results show a tendency to reduce those grids with high habitat potentiality (=0.55-1) for both periods and emission scenarios. This reduction was more pronounced for the year 2070 under the RCP 8.5, leaving those grids with a high potentiality relegated to areas with a high altitude.

Downloads

Download data is not yet available.

References

AGUADO, L. O., FERERES, A. & VIÑUELA, E., 2017.– Guía de campo de los polinizadores de España: 340 pp. Ediciones Mundi-Prensa, Madrid.

ARAÚJO, M. B. & LUOTO, M., 2007.– The importance of biotic interactions for modelling species distributions under climate change.– Global Ecology and Biogeography, 16(6): 743-753. DOI: https://doi.org/10.1111/j.1466-8238.2007.00359.x

ARAÚJO, M. B., PEARSON, R. G., THUILLER, W. & ERHARD, M., 2005.– Validation of species-climate impact models under climate change.– Global Change Biology, 11: 1504-1513. DOI: https://doi.org/10.1111/j.1365-2486.2005.01000.x

BOYCE, M. S., VERNIER, P. R., NIELSEN, S. E. & SCHMIEGELOW, F. K. A., 2002.– Evaluating resource selection functions.– Ecological Modelling, 157(2-3): 281-300. DOI: https://doi.org/10.1016/S0304-3800(02)00200-4

COLLIN, E., 2003.– Euforgen technical guidelines for genetic conservation and use for European white elm (Ulmus laevis). International Plant Genetic Resources Institute. Rome.

COLLIN, E., BILGER, I., ERIKSSON, G. & TUROK, J., 2000.– The conservation of Elm Genetic Resources in Europe.– The Elms: 281-293. DOI: https://doi.org/10.1007/978-1-4615-4507-1_18

DE LUIS, M., BRUNETTI, M., GONZÁLEZ-HIDALGO, J. C., LONGARES, L. A. & MARTÍN-VIDE, J., 2010.– Changes in seasonal precipitation in the Iberian Peninsula during 1946-2005.– Global and Planetary Change, 74(1): 27-33. DOI: https://doi.org/10.1016/j.gloplacha.2010.06.006

DENNIS, R. L., 1993.– Butterflies and Climate Change: 276 pp. Manchester University Press, Manchester.

DENNIS, R. L., DAPPORTO, L., DOVER, J. W. & SHREEVE, T. G., 2013.– Corridors and barriers in biodiversity conservation: A novel resource-based habitat perspective for butterflies.– Biodiversity and Conservation, 22: 2709-2734. DOI: https://doi.org/10.1007/s10531-013-0540-2

DENNIS, R. L. H., HODGSON, J. G., GRENYER, R., SHREEVE, T. G. & ROY, D. B., 2004.– Host plants and butterfly biology. Do host-plant strategies drive butterfly status?- Ecological Entomology, 29(1): 12-26. DOI: https://doi.org/10.1111/j.1365-2311.2004.00572.x

DIAMOND, S. E., FRAME, A. M., MARTÍN, R. A. & BUCKLEY, L. B., 2011.– Species’ traits predict phenological responses to climate change in butterflies.– Ecology, 92(5): 1005-1012. DOI: https://doi.org/10.1890/10-1594.1

DÍAZ, G., GALLEGO, D., GUTIÉRREZ, A., MUSALY, A., SORIANO, E. & GALIÁN, J., 2009.– Caracterización morfológica, fisiológica y molecular de nuevos aislados de Ophiostoma novo-ulmi.– Boletín de Sanidad Vegetal. Plagas, 35: 469-479.

DUNNE, J. P., STOUFFER, R. J. & JOHN, J. G., 2013.– Reductions in labour capacity from heat stress under climate warming.– Nature Climate Change, 3(6): 563-566. DOI: https://doi.org/10.1038/nclimate1827

ESRI, 2015.– ArcGIS, version 10.4. Environmental System Research Institute, Redlands, CA.

FIELDING, A. H. & BELL, J. F., 1997.– A review of methods for the assessment of prediction errors in conservation presence/absence models.– Environmental Conservation, 24(1): 38-49. DOI: https://doi.org/10.1017/S0376892997000088

FORSTER, P. M., ANDREWS, T., GOOD, P., GREGORY, J. M., JACKSON, L. S. & ZELINKA, M., 2013.– Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models.– Journal of Geophysical Research: Atmospheres, 118: 1139-1150. DOI: https://doi.org/10.1002/jgrd.50174

FOX, R., WARREN, M. S., ROY, D. B., BRERETON, T. M. & ROBINSON, A., 2011.– A new Red List of British butterflies.– Insect Conservation and Diversity, 4: 159-172. DOI: https://doi.org/10.1111/j.1752-4598.2010.00117.x

GARCÍA-BARROS, E., MUNGUIRA, M., MARTÍN-CANO, J., ROMO-BENITO, H., GARCÍA-PEREIRA, P. & MARAVALHAS, E. S., 2004.– Atlas de las mariposas diurnas de la Península Ibérica e islas Baleares (Lepidoptera: Papilionoidea & Hesperioidea).– Monografías de la S.E.A., 11: 1-228.

GÓMEZ-S., R., 2006.– Plan de manejo propuesto para la cría de mariposas promisorias como alternativa productiva para comunidades indígenas de la Amazonia colombiana.– Boletín de la Sociedad Entomológica Aragonesa, 38: 451-460.

GONZÁLEZ-FERNÁNDEZ, J., 2008.– Algunas citas extemporáneas o poco habituales de ropalóceros de Asturias (Lepidoptera: Papilionoidea & Hesperioidea).– Boletín de la Sociedad Entomológica Aragonesa, 42: 453-454.

HEIKKINEN, R. K., LUOTO, M., LEIKOLA, N., PÖYRY, J., SETTELE, J., KUDRNA, O., MARMION, M., FRONZEK, E. & THUILLER, W., 2010.– Assessing the vulnerability of European butterflies to climate change using multiple criteria.– Biodiversity and Conservation, 19(3): 695-723. DOI: https://doi.org/10.1007/s10531-009-9728-x

HIJMANS, R. J., CAMERON, S. E., PARRA, J. L., JONES, G. & JARVIS, A., 2005.– Very high resolution, interpolated climate surfaces for global land areas.– International Journal of Climatology, 25: 1965-1978. DOI: https://doi.org/10.1002/joc.1276

IPCC., 2014.– Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change: 151 pp. Geneva, Switzerland.

KONVICKA, M., MARADOVA, M., BENES, J., FRIC, Z. & KEPKA, P., 2003.– Uphill shifts in distribution of butterflies in the Czech Republic: Effects of changing climate detected on a regional scale.– Global Ecology and Biogeography, 12(5): 403-410. DOI: https://doi.org/10.1046/j.1466-822X.2003.00053.x

LATASSA-ASSO, T., 1999.– Actualización de la distribución geográfica de los lepidópteros ropalóceros de La Rioja (España) (Insecta: Lepidoptera).– ZUBIA. Monográfico, 11: 11-60.

LÓPEZ, C. & PINO, J. J., 1992b.– Confirmación de la presencia de Erebia euryale (Esper, 1805) en Lugo y primera cita para Galicia de Strymonidia w-album (Knoch, 1782).– SHILAP Revista de lepidoterología, 20(80): 405-406.

MAXENT (https://biodiversityinformatics.amnh.org/open_source/maxent/)

MEROW, C., SMITH, M. J. & SILANDER, J. A., 2013.– A practical guide to MaxEnt for modeling species’distributions: what it does, and why inputs and settings matter.– Ecography, 36: 1058-1069. DOI: https://doi.org/10.1111/j.1600-0587.2013.07872.x

MILLER, R., 2015.– The Trees and Woodland of Abney Park Cemetery.– The London Naturalist, 87: 1-24.

MIRANDA-SIERRA, C. A., GEADA-LÓPEZ, G. & SOTOLONGO-SOSPEDRA, R., 2017.– Modelación de hábitats potenciales de Pinus caribaea Morelet var. caribaea Barrett y Golfari en el occidente de Cuba.– Avances, 19(1): 42-50.

MORTERA-PIORNO, H., 2007.– Mariposas de Asturias: 241 pp. Gobierno del Principado de Asturias, Oviedo.

MUNGUIRA, M. L., GARCÍA-BARROS, E. & MARTÍN, J., 1997.– Plantas nutricias de los licénidos y satirinos españoles (Lepidoptera?: Lycaenidae y Nymphalidae).– Boletín Asociación Española de Entomología, 21(1-2): 29-53.

MURRIA-BELTRÁN, E., 2009.– Presencia de Apatura iris (Linnaeus, 1758) (Nymphalidae, Apaturinae) en el pirineo central de Huesca, nuevos registros de Danaus chrysippus (Linnaeus, 1758) (Nymphalidae, Danainae) del valle medio del Ebro, y otros datos de interés para el conocimiento de los Papilionoidea de Aragón (España) (Lepidoptera).– Boletín de la Sociedad Entomológica Aragonesa, 45: 335-342.

NAVARRO, C. & CASTROVIEJO, S., 2005.– Ulmus L.– Flora Iberica, 3: 245-247 pp. Real Jardín Botánico, CSIC,

Madrid.

NEWBOLD, T., GILBERT, F., ZALAT, S., EL-GABBAS, A. & READER, T., 2009.– Climate-based models of spatial patterns of species richness in Egypt ’s butterfly and mammal fauna.– Journal of Biogeography, 36: 2085-2095. DOI: https://doi.org/10.1111/j.1365-2699.2009.02140.x

OBREGÓN, R., ARENAS-CASTRO, S., GIL-T, F., JORDANO, D. & FERNÁNDEZ-HAEGER, J., 2014.– Biología, ecología y modelo de distribución de las especies del género Pseudophilotes Beuret, 1958 en Andalucía (Sur de España) (Lepidoptera: Lycaenidae).– SHILAP Revista de lepidoterología, 42(168): 501-515.

PEARCE, J. & FERRIER, S., 2000.– Evaluating the predictive performance of habitat models developed using logistic regression.– Ecological Modelling, 133: 225-245. DOI: https://doi.org/10.1016/S0304-3800(00)00322-7

PETERSON, A. T. & COHOON, K. P., 1999.– Sensitivity of distributional prediction algorithms to geographic data completeness.– Ecological Modelling, 117(1): 159-164. DOI: https://doi.org/10.1016/S0304-3800(99)00023-X

PHILIPS, S. J., ANDERSON, R. P. & SCHAPIRE, R. E., 2006.– Maximum entropy modeling of species geographic distributions.– Ecological Modelling, 190: 231-259. DOI: https://doi.org/10.1016/j.ecolmodel.2005.03.026

PHILIPS, S. J., DUDIK, M. & SCHAPIRE, R. E., 2004.– A Maximum Entropy Approach to Species Distribution Modeling.– Proceedings of the twenty-first international conference on Machine learning: 83 pp. ACM. DOI: https://doi.org/10.1145/1015330.1015412

RODRÍGUEZ-CALCERRADA, J., NANOS, N. & ARANDA, I., 2011.– The relevance of seed size in modulating leaf physiology and early plant performance in two tree species.– Trees, 25: 873-884. DOI: https://doi.org/10.1007/s00468-011-0562-x

ROMO, H., GARCÍA-BARROS, E. & MUNGUIRA, M., 2006.– Distribución potencial de trece especies de mariposas diurnas amenazadas o raras en el área ibero-balear (Lepidoptera: Papilionoidea & Hesperioidea).– Boletín de la Asociación Española de Entomología, 30(3-4): 25-49.

ROMO, H., SANABRIA, P. & GARCÍA-BARROS, E., 2012.– Predicción de los impactos del cambio climático en la distribución de lepidópteros del género Boloria Moore, 1900 en la Península Ibérica (Lepidoptera: Nymphalidae).– SHILAP Revista de lepidoterología, 40(158): 1-20.

ROMO, H. & VELASCO, J. P., 2010.– Selección de áreas prioritarias para las especies de mariposas diurnas amenazadas, endémicas y raras de Asturias (España) (Lepidoptera: Papilionoidea y Hesperioidea).– Boletín de la Sociedad Entomológica Aragonesa, 47: 199-208.

ROMO, H. & GARCÍA-BARROS, E., 2005.– Distribución e intensidad de los estudios faunísticos sobre mariposas diurnas en la Península Ibérica e islas.– Graellsia, 61(1): 37-50. DOI: https://doi.org/10.3989/graellsia.2005.v61.i1.5

ROMO, H., MUNGUIRA, M. L. & GARCÍA-BARROS, E., 2007.– Area selection for the conservation of butterflies in the Iberian Peninsula and Balearic Islands.– Animal Biodiversity and Conservation, 30(1): 7-27. DOI: https://doi.org/10.32800/abc.2007.30.0007

ROSSIGNOLI, A. & GÉNOVA, M., 2003.– Corología y hábitat de Ulmus glabra Huds. en la Península Ibérica.– Ecología, 17: 99-121.

ROY, D. B. & SPARKS, T. H., 2000.– Phenology of British butterflies and climate change.– Global Change Biology, 6(4): 407-416. DOI: https://doi.org/10.1046/j.1365-2486.2000.00322.x

RSTUDIO TEAM, 2016.– RStudio: Integrated Development for R. RStudio. Boston, MA: Inc. SANJURJO-FRANCH, M. J., 2007.– Citas nuevas o interesantes de Papilionoidea Latreille , 1809 (Lepidoptera), en el norte de la provincia de León (España).– Boletín de la Sociedad Entomológica Aragonesa, 40: 555-558.

SCHULTZ, C. B., 1998.– Dispersal Behavior and Its Implications for Reserve Design in a Rare Oregon Butterfly.– Conservation Biology, 12(2): 284-292. DOI: https://doi.org/10.1046/j.1523-1739.1998.96266.x

SOLLA, A. & GIL, L., 2001.– Selección de olmos resistentes a la grafiosis. I. Influencia de la composición del inóculo efectivo.– Boletín de Sanidad Vegetal. Plagas, 27: 355-362.

SOMOT, S., SEVAULT, F., DÉQUÉ, M. & CRÉPON, M., 2008.– 21st century climate change scenario for the Mediterranean using a coupled atmosphere-ocean regional climate model.– Global and Planetary Change, 63: 112-126. DOI: https://doi.org/10.1016/j.gloplacha.2007.10.003

STEINBAUER, M. J., GRYTNES, J.A., JURASINSKI, G., KULONEN, A., LENOIR, J., PAULI, H., RIXEN, C., WINKLER, M., BARDY-DURCHHALTER, M., BARNI, E., BJORKMAN, A. D., BREINER, F. T., BURG, S., CZORTEK, P., DAWES, M. A., DELIMAT, A., DULLINGER, S., ERSCHBAMER, B., FELDE, V. A., FERNÁNDEZ-ARBERAS, O., FOSSHEIM, K. F., GÓMEZ-GARCÍA, D., GEORGES, D., GRINDRUD, E., HAIDER, S., HAUGUM, S. V., HENRISKSEN, H., HERREROS, M. J., JAROSZEWICZ, B., JAROSZYNSKA, F., KANKA, R., KAPFER, J., KLANDERUD, K., KÜHN, I., LAMPRECHT, A.,

MATTEODO, M., MORRA DI CELLA, U., NORMAND, S., ODLAND, A., OLSEN, S. L., PALACIO, S., PETE, M., PISCOVÁ, V., SEDLAKOVA, B., STEINBAUER, K., STÖCKLI, V., SVENNING, J., TEPPA, G., THEURILLAT, J., VITTOZ, P., WOODIN, S. J., ZIMMERMANN, N. E., WIPF, S., 2018.– Accelerated increase in plant species richness on mountain summits is linked to warming.– Nature, 556: 231-234. DOI: https://doi.org/10.1038/s41586-018-0005-6

TEMPLADO, J., 1983.– El paisaje vegetal y la distribución de los Lepidópteros Ibéricos (Lepidoptera).– Boletín de la Asociación Española de Entomología, 6: 337-341.

THOMAS, J. A., SIMCOX, D. J. & HOVESTADT, T., 2011.– Evidence based conservation of butterflies.– Journal of Insect Conservation, 15(1): 241-258. DOI: https://doi.org/10.1007/s10841-010-9341-z

TOLMAN, T. & LEWINGTON, R., 2008.– The most complete guide to the butterflies of Britain and Europe: 384 pp. Fluke Art, London.

UVAROV, B. P., 1931.– Insects and climate.– Transactions of the Entomological Society of London, 79(27): 174-186. DOI: https://doi.org/10.1111/j.1365-2311.1931.tb00696.x

VENTURAS, M., FUENTES-UTRILLA, P., ENNOS, R., COLLADA, C. & GIL, L., 2013.– Human-induced changes on fine-scale genetic structure in Ulmus laevis Pallas wetland forests at its SW distribution limit.– Plant Ecology, 214: 317-327. DOI: https://doi.org/10.1007/s11258-013-0170-5

VENTURAS, M., LÓPEZ, R., GASCÓ, A. & GIL, L., 2013.– Hydraulic properties of European elms: xylem safetyefficiency tradeoff and species distribution in the Iberian Peninsula.– Trees, 27: 1691-1701. DOI: https://doi.org/10.1007/s00468-013-0916-7

VISSER, M. E. & BOTH, C., 2005.– Shifts in phenology due to global climate change: the need for a yardstick.– Proceedings of the Royal Society B: Biological Sciences, 272: 2561-2569. DOI: https://doi.org/10.1098/rspb.2005.3356

WALDHARDT, R., SIMMERING, D. & OTTE, A., 2004.– Estimation and prediction of plant species richness in a mosaic landscape.– Landscape Ecology, 19: 211-226. DOI: https://doi.org/10.1023/B:LAND.0000021722.08588.58

WILSON, R. J., GUTIÉRREZ, D., GUTIÉRREZ, J. & MONSERRAT, V. J., 2007.– An elevational shift in butterfly species richness and composition accompanying recent climate change.– Global Change Biology, 13(9): 1873-1887. DOI: https://doi.org/10.1111/j.1365-2486.2007.01418.x

YUKIMOTO, S., ADACHI, Y., HOSAKA, M., SAKAMI, T., YOSHIMURA, H., HIRABARA, M., TANAKA, T., SHINDO, E., TSUJINO, H., DEUSHI, M., MIZUTA, R., YABU, S., OBATA, A., NAKANO, H., KOSHIRO, T., OSE, T., KITOH, A., 2012.– A New Global Climate Model of the Meteorological Research Institute: MRICGCM3 (Model Description and Basic Performance).– Journal of the Meteorological Society of Japan, 90A: 23-62. DOI: https://doi.org/10.2151/jmsj.2012-A02

Published

2019-03-30

How to Cite

García-Gila, J. (2019). Estimation of the potential habitat for Satyrium w-album (Knoch, 1782) in the Iberian Peninsula and prediction of the climate change effects on its distribution for the years 2050 and 2070 (Lepidoptera: Lycaenidae). SHILAP Revista De lepidopterología, 47(185), 97–114. https://doi.org/10.57065/shilap.729

Issue

Section

ISSUE