First report of Tetracona (Agrotera) amathealis (Walker, 1859) on a Eucalyptus grandis W. Hill × Eucalyptus pellita F. Muell. (Myrtaceae) hybrid in Indonesia (Lepidoptera: Crambidae, Spilomelinae)

Primer registro de Tetracona (Agrotera) amathealis (Walker, 1859) sobre un híbrido de Eucalyptus grandis W. Hill × Eucalyptus pellita F. Muell. (Myrtaceae) en Indonesia (Lepidoptera: Crambidae: Spilomelinae)

T. Melia
Asia Pacific Resources International Holdings Ltd, Indonesia
N. G. H. B. Sinulingga
Asia Pacific Resources International Holdings Ltd, Indonesia
M. V. Maretha
Asia Pacific Resources International Holdings Ltd, Indonesia
R. Wijaya
Asia Pacific Resources International Holdings Ltd, Indonesia
R. R. Efendi
Asia Pacific Resources International Holdings Ltd, Indonesia
L. S. S. Oliveira
Asia Pacific Resources International Holdings Ltd, Indonesia
S. K. Kkadan
Asia Pacific Resources International Holdings Ltd, Indonesia
W. de S. Tavares
Asia Pacific Resources International Holdings Ltd, Indonesia
M. Tarigan
Asia Pacific Resources International Holdings Ltd, Indonesia
A. Duran
Asia Pacific Resources International Holdings Ltd, Indonesia

First report of Tetracona (Agrotera) amathealis (Walker, 1859) on a Eucalyptus grandis W. Hill × Eucalyptus pellita F. Muell. (Myrtaceae) hybrid in Indonesia (Lepidoptera: Crambidae, Spilomelinae)

SHILAP Revista de lepidopterología, vol. 49, núm. 195, pp. 407-412, 2021

Sociedad Hispano-Luso-Americana de Lepidopterología

Received: 14 October 2020

Accepted: 18 December 2020

Published: 30 September 2021

Abstract: Tetracona amathealis (Walker, 1859) (Lepidoptera: Crambidae) is previously known from Australia and New Guinea, where it feeds on the native Eucalyptus tereticornis Sm. (Myrtaceae). The objective of this study was the report, for the first time, T. amathealis in Indonesia as well as to record new host plants for this insect. Were collected manually from a Eucalyptus grandis W. Hill. × Eucalyptus pellita F. Muell. hybrid commercial plantation in Riau, Sumatra, Indonesia and a sample sent for identification via molecular analysis. Our findings revealed that the molecular approach used (through sequencing of its mt-COI gene) successfully allowed the identification of the species as T. amathealis. This insect is recorded for the first time in Indonesia on a new host, a E. grandis × E. pellita hybrid.

Keywords: Lepidoptera, Crambidae, Spilomelinae, Tetracona amathealis, first record, Indonesia.

Resumen: Tetracona amathealis (Walker, 1859) (Lepidoptera: Crambidae) previamente es conocida de Australia y New Guinea, donde se alimenta del oriundo Eucalyptus tereticornis Sm. (Myrtaceae). El objetivo de este estudio fue registrar, por primera vez, T. amathealis en Indonesia así como registrar una nueva planta nutricia para el insecto. Manualmente, fueron recogidos de un híbrido de Eucalyptus grandis W. Hill. × Eucalyptus pellita F. Muell. Plantación comercial en Riau, Sumatra, Indonesia y una simple muestra enviada para identificación vía análisis molecular. Nuestras conclusiones revelaron que el enfoque molecular usado (a través del ordenación en serie de su gen mitocondrial mt-COI) permitió la identificación de la especie con éxito como T. amathealis. Este insecto se registra, por primera vez, en Indonesia sobre una nueva planta nutricia un híbrido de E. grandis × E. pellita.

Palabras clave: Lepidoptera, Crambidae, Spilomelinae, Tetracona amathealis, primer registro, Indonesia.

Eucalyptus L’Hér. (Myrtales: Myrtaceae) is a plant genus with most species native to Australia (PRASETYO et al., 2017; INAIL et al., 2019). It is largely planted in Riau, Sumatra, Indonesia, where is utilized to produce paper, pulp and viscose materials (TAVARES et al., 2020). Several lepidopteran species infest Eucalyptus in Riau, including Ophiusa disjungens (Walker, 1858) (Erebidae) (LAKSAMANA et al., 2020), Polyphagozerra coffeae (Cossidae) (TAVARES et al., 2020; TACHI et al., 2020) and Strepsicrates sp. (Tortricidae) (KKADAN et al., 2020a).

Edward Meyrick described the genus Tetracona in 1884 with Aediodes amathealis Walker, 1859 as type species (MEYRICK, 1884). The genus was for a long period treated as a synonym of Agrotera Schrank, 1802, but a recent taxonomic revision of Agrotera resulted in the re-instatement of Tetracona (CHEN et al., 2017). The genus is placed in the tribe Agroterini based on the structure of the uncus, featuring a broad base and simple chaetae on the uncus head, a well-developed medial process of the gnathos, the rectangular, elongate valvae with parallel costal and ventral margins, and the notably elongate saccus (at least in Tetracona amathealis (Walker, 1859)) (MALLY et al., 2019). The genus with its three species (T. amathealis, Tetracona multispinaJie & Li, 2020 and Tetracona pictalisWarren, 1896) is known from Australia, China and New Guinea (HERBISON-EVANS et al., 2013; JIE et al., 2020).

Francis Walker described T. amathealis in 1859 (synonyms Pyralis ornatalis Walker, 1866) based on material collected at Moreton Bay in Queensland, Australia (WALKER, 1859). It is found in Australia (Queensland, northern New South Wales and Western region) and New Guinea (CHEN et al., 2017). The wingspan is about 20 mm. The basal half of the forewings is golden and the marginal half grey. An orange submarginal band divides these two areas. The hindwings are grey with a gold inner margin (HERBISON-EVANS et al., 2013). The T. amathealis leafrollers are sometimes considered a Eucalyptus tereticornis Sm. pest (HERBISON-EVANS et al., 2013), an economically important plant native to eastern Australia and southern New Guinea (BOOTH, 2019).

Molecular method is an important way to confirm identification of lepidopteran species such as Crambidae (BARRERA et al., 2017) and Noctuidae (SULISTYONO et al., 2020). Insects recovered from traps such as light and sticky traps often have their body parts damaged leading to a difficult species determination through morphology analysis (MORINIÈRE et al., 2016; FUJIWARA et al., 2017). The collection of insect immatures without a defined rearing protocol is also a challenge for species identification via morphology analysis (ANTONINI et al., 2009; SHIN et al., 2015), since most insects are identified based on their adult body morphology examination (TAHIR et al., 2018).

The objective of this study was to report the findings of T. amathealis in Indonesia, confirmed by molecular technique, as well as its attack on a Eucalyptus grandis W. Hill. × Eucalyptus pellita F. Muell. hybrid. We provided also a key for Tetracona species identification in Indonesia.

Material and methods

Collection ofT. amathealis

Tetracona amathealis leafrollers were collected manually from trees of an E. grandis × E. pellita hybrid in a commercial stand in the first semester of 2020 in Teso East area (0º 30’ N × 101º 26’ E, 33 m altitude) in Riau. Leafrollers were placed in one-liter plastic containers and taken to the Entomology Laboratory of the Asia Pacific Resources International Holdings Ltd. (APRIL) of the PT. Riau Andalan Pulp and Paper (RAPP), where they were kept in a room at 26 ± 2ºC, 75 ± 15% RH and 14:10 h (L:D) photoperiod. Leafrollers received daily fresh E. grandis × E. pellita shoots as a food.

Molecular identification of T. amathealis

One leafroller individual was sent to the Molecular Biology and Genomics Laboratory of APRIL in Pangkalan Kerinci, Riau for species name confirmation. DNA extraction and PCR of the mitochondrial cytochrome c oxidase subunit I (mt-COI) gene were carried out as described by SULISTYONO et al. (2020). The PCR product was then sent for Sanger Sequencing. Trimming and consensus sequence building were carried out using the sangeranalyseR package (CHAO et al., 2020) with default settings. We used the consensus sequence to find the most similar sequence in genbank using blastn (ALTSCHUL et al., 1990). The top hit, sorted by the highest score, is kept. The consensus sequence, top hits from the blast search as well as several sequences from the StrepsicratesMeyrick, 1888 (Lepidoptera: Tortricidae, Eucosmini) were aligned using Clustal Omega (SIEVERS et al., 2011), and the output was used to build a phylogenetic tree. The maximum likelihood approach (FELSENSTEIN et al., 1981) was used to build a dendrogram, with a bootstrap value of 1,000 and GTR (LE et al., 2008) as the DNA substitution model, both of which were implemented in the phangorn R package (SCHLIEP et al., 2011).

Results

Report ofT. amathealis in Indonesia

This is the first report of T. amathealis (Fig. 1) as well as of a member in the genus Tetracona in Indonesia. We used molecular method to confirm the identity of this insect species, through sequencing of its mt-COI gene.

Report of T. amathealis on E. grandis × E. pellita

The T. amathealis were collected while feeding on a E. grandis × E. pellita hybrid, which represents two new host plants for this insect.

Adult Tetracona amathealis (Walker, 1859).
Fig. 1.–
Adult Tetracona amathealis (Walker, 1859).

Discussion

Report ofT. amathealis in Indonesia

Tetracona amathealis, reported in the current study in Indonesia, has been previously reported in Australia (i.e., Queensland, northern New South Wales and Western region) and New Guinea. Other reported Tetracona species in Asia includes T. multispina in China, Jiangxi Province (i.e., Huangzihao, Fuliang; Tongboshan; Wuyuan, Shangbao; Dabali, Xunwu; Doushui, Shangyou; Shangyou Arboretum) (JIE et al., 2020) and T. pictalis in Australia (i.e., Queensland) (NUSS et al., 2003).

The mt-COI gene utilized to identify T. amathealis is often used in taxonomic studies due to its lower divergence within species and larger divergence across species. The most similar sequence to our sample is of that T. amathealis (Table 1), which was deposited at the Australian National Insect Collection. Phylogenetic analysis confirms that our sample cluster together with T. amathealis in all 1,000 bootstraps, indicating the similarity to T. amathealis is stable (Fig. 2).

Table 1.–
Origin, score, E value, identity, and accession of Tetracona (Agrotera) amathealis.
Origin, score, E value, identity, and accession of Tetracona (Agrotera) amathealis.

Dendrogram of the Teso East area sample of Tetracona (Agrotera) amathealis using the maximum likelihood approach with 1,000 bootstraps.
Fig. 2.–
Dendrogram of the Teso East area sample of Tetracona (Agrotera) amathealis using the maximum likelihood approach with 1,000 bootstraps.

Report of T. amathealis on E. grandis × E. pellita

Tetracona amathealis, collected in the present study while feeding on a E. grandis × E. pellita hybrid, has been previously recorded to feed on E. tereticornis (HERBISON-EVANS et al., 2013). This insect was seen along with the tea mosquito bug, Helopeltis theivora Waterhouse, 1886 (Hemiptera: Miridae), a sapsucker and other mirid species on the commercial stands of E. grandis × E. pellita hybrid in Riau (KKADAN et al., 2020b).

Acknowledgments

Thanks to Dr. Buck Richardson (LeapFrogOz, Kuranda Kreations, Queensland, Australia) for providing the figure 1. The following Indonesian companies provided financial support to the study: PT. Riau Andalan Pulp and Paper (RAPP) and Asia Pacific Resources International Holdings Ltd. (RAPP).

BIBLIOGRAPHY

ALTSCHUL, S. F., GISH, W., MILLER, W., MYERS, E. W. & LIPMAN, D. J., 1990.– Basic local alignment search tool.– Journal of Molecular Biology, 215(3): 403-410.

ANTONINI, G., COLETTI, G., SERRANI, L., TRONCI, C., CRISTOFARO, M. & SMITH, L., 2009.– Using molecular genetics to identify immature specimens of the weevil Ceratapionbasicorne (Coleoptera: Apionidae).– Biological Control, 51(1): 152-157.

BARRERA, G. P., VILLAMIZAR, L. F., ESPINEL, C., QUINTERO, E. M., BELAICH, M. N., TOLOZA, D. L., GHIRINGHELLI, P. D. & VARGAS, G., 2017.– Identification of Diatraea spp. (Lepidoptera: Crambidae) based on cytochrome oxidase II.– PLoS ONE, 12(9): e0184053.

BOOTH, T. H., 2019.– Assessing the thermal adaptability of tree provenances: An example using Eucalyptus tereticornis.– Australian Forestry, 82(4): 176-180.

CHAO, K. H., BARTON, B., PALMER, S. & LANFEAR, R., 2020.– SangeranalyseR: Simple and interactive analysis of Sanger sequencing data in R.– Bioinformatics: doi: https://doi.org/10.1101/2020.05.18.102459 (preprint).

CHEN, K., HORAK, M., DU, X. & ZHANG, D., 2017.– Revision of the Australian species of Agrotera Schrank (Lepidoptera: Pyraloidea: Crambidae: Spilomelinae).– Zootaxa, 4362(2): 213-224.

FELSENSTEIN, J., 1981.– Evolutionary trees from DNA sequences: A maximum likelihood approach.– Journal of Molecular Evolution, 17(1): 368-376.

FUJIWARA, K., UECHI, N., SHIMIZU, Y., TODA, S., INOUE, H., YAMAGUCHI, T., IWANAMI, T. & FUJIKAWA, T., 2017.– Effective molecular detection of Diaphorina citri Kuwayama (Hemiptera: Liviidae) in bulk insect samples from sticky traps.– Journal of Applied Entomology, 141(1-2): 61-66.

HERBISON-EVANS, D., HACOBIAN, B. & CROSSLEY, S., 2013.– Agrotera amathealis (Walker, 1859). Australian caterpillars and their butterflies and moths.– Available from http://lepidoptera.butterflyhouse.com.au/spil/amathealis.html (accessed 18 August 2020).

INAIL, M. A., HARDIYANTO, E. B. & MENDHAM, D. S., 2019.– Growth responses of Eucalyptus pellita F. Muell plantations in South Sumatra to macronutrient fertilisers following several rotations of Acacia mangium Willd.– Forests, 10(12): 1054.

JIE, L. L., YANG, J. B. & LI, W. C., 2020.– First record of the genus Tetracona Meyrick (Lepidoptera, Crambidae) from China, with description of a new species.– ZooKeys, 941: 101-105.

KKADAN, S. K., SIRAIT, B. A., ASFA, R., TAVARES, W. DE S., TARIGAN, M., DURAN, A., WONG, C. Y. & SHARMA, M., 2020a.– Evaluation of a spinetoram-based insecticide against lepidopteran and thrips infesting acacia and Eucalyptus in Sumatra, Indonesia.– Journal of Entomology and Zoology Studies, 8(2): 1345-1351.

KKADAN, S. K., YESHWANTH, H. M., TAVARES, W. DE S., PASARIBU, I., ABAD, J. I. M., TARIGAN, M., DURAN, A., WONG, C. Y. & SHARMA, M., 2020b.– Mirid pests of Eucalyptus in Indonesia: Notes on damage symptoms, alternate hosts and parasitoid.– Journal of the Kansas Entomological Society, 92(4): 577-588.

LAKSAMANA, R. A., SINULINGGA, N. G. H. B., FERLIANDA, I. A., SAMOSIR, M. N., PANE, S. B., KKADAN, S. K., TAVARES, W. DE S., TARIGAN, M. & DURAN, A., 2020.– First report of Ophiusa disjungens (Walker, 1858) on Acacia mangium (Fabaceae), and damage and notes of its biology on Eucalyptus (Myrtaceae) commercial plantations in Sumatra, Indonesia (Lepidoptera: Erebidae).– SHILAP Revista de lepidopterología, 48(191): 439-447.

LE, S. Q. & GASCUEL, O., 2008.– LG: An improved, general amino-acid replacement matrix molecular biology and evolution.– Molecular Biology and Evolution, 25(7): 1307-1320.

MALLY, R., HAYDEN, J. E., NEINHUIS, C., JORDAL, B. H. & NUSS, M., 2019.– The phylogenetic systematics of Spilomelinae and Pyraustinae (Lepidoptera: Pyraloidea: Crambidae) inferred from DNA and morphology.– Arthropod Systematics & Phylogeny, 77(1): 141-204.

MEYRICK, E., 1884.– On the classification of the Australian Pyralidina.– Transactions of the Entomological Society of London, 1884(61-80): 277-350.

MORINIÈRE, J., CANCIAN DE ARAUJO, B., LAM, A. W., HAUSMANN, A., BALKE, M., SCHMIDT, S., HENDRICH, L., DOCZKAL, D., FARTMANN, B., ARVIDSSON, S. & HASZPRUNAR, G., 2016.– Species identification in Malaise trap samples by DNA barcoding based on NGS technologies and a scoring matrix.– PLoS ONE, 11(5): e0155497.

NUSS, M., LANDRY, B., MALLY, R., VEGLIANTE, F., TRÄNKNER, A., BAUER, F., HAYDEN, J., SEGERER, A., SCHOUTEN, R., LI, H., TROFIMOVA, T., SOLIS, M. A., DE PRINS, J. & SPEIDEL, W., 2003- onwards.– Global Information System on Pyraloidea .GlobIZ).– Available from http://www.pyraloidea.org/ (accessed 18 August 2020).

PRASETYO, A., AISO, H., ISHIGURI, F., WAHYUDI, I., WIJAYA, I. P. G., OHSHIMA, J. & YOKOTA, S., 2017.– Variations on growth characteristics and wood properties of three Eucalyptus species planted for pulpwood in Indonesia.– Tropics, 26(2): 59-69.

SCHLIEP, K. P., 2011.– Phangorn: Phylogenetic analysis in R.– Bioinformatics, 27(4): 592-593.

SHIN, S., JUNG, S., HELLER, K., MENZEL, F., HONG, T. K., SHIN, J. S., LEE, S. H., LEE, H. & LEE, S., 2015.– DNA barcoding of Bradysia (Diptera: Sciaridae) for detection of the immature stages on agricultural crops.– Journal of Applied Entomology, 139(8): 638-645.

SIEVERS, F., WILM, A., DINEEN, D., GIBSON, T. J., KARPLUS, K., LI, W., LOPEZ, R., MCWILLIAM, H., REMMERT, M., SODING, J., THOMPSON, J. D. & HIGGINS, D. G., 2011.– Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega.– Molecular Systems Biology, 7: 539.

SULISTYONO, E., KKADAN, S. K., MARETHA, M. V., TAVARES, W. DE S., SIRAIT, B. A., SINULINGGA, N. G. H. B., TARIGAN, M. & DURAN A., 2020.– Spodoptera exigua and Spodoptera litura (Lepidoptera, Noctuidae) on an Acacia crassicarpa (Fabaceae) commercial nursery in Sumatra, Indonesia.– Journal of the Lepidopterists’ Society, 74(3): 176-182.

TACHI, T., SHIMA, H., TAVARES, W. DE S. & TARIGAN, M., 2020.– A new species of Cossidophaga Baranov from Indonesia (Diptera: Tachinidae), a parasitoid of the carpenter moth, Polyphagozerra coffeae (Nietner) (Lepidoptera: Cossidae).– Oriental Insects, 54(2): 545-555.

TAHIR, H. M., NOOR, A., MEHMOOD, S., SHERAWAT, S. M. & QAZI, M. A., 2018.– Evaluating the accuracy of morphological identification of insect pests of rice crops using DNA barcoding.– Mitochondrial DNA Part B, 3(2): 1220-1224.

TAVARES, W. DE S., KKADAN, S. K., HENDRIK, A. M., TARIGAN, M., ASFA, R., YAKOVLEV, R. V., TACHI, T., DURAN, A., WONG, C. Y. & SHARMA, M., 2020.– Notes on the biology and natural enemies of Polyphagozerracoffeae (Nietner, 1861) infesting Eucalyptus pellita F. Muell. (Myrtaceae) trees in Riau, Indonesia (Lepidoptera: Cossidae, Zeuzerinae).– SHILAP Revista de lepidopterología, 48(190): 333-349.

WALKER, F., 1859.– Pyralites. List of the Specimens of Lepidopterous Insects in the Collection of the British Museum, London, 17(3): 255-508.

Notas de autor

*Autor para la correspondencia / Corresponding autor Tavares@aprilasia.com

HTML generado a partir de XML-JATS4R por